Skip to main content
Erschienen in: Innovative Infrastructure Solutions 4/2021

01.12.2021 | Technical paper

Structural behavior of ferro cellular insulated wall panel

verfasst von: M. Y. Khan, A. Baqi, M. R. Sadique

Erschienen in: Innovative Infrastructure Solutions | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Applications of structural insulated panels (SIPs) have been increasing in the construction industry due to their lightweight behavior and higher thermal insulation capacity compared to conventional brick masonry. However, the weak structural behavior of SIPs has restricted their applications in building construction. In this research paper, the development and analysis of a new lightweight SIP wall panel referred as ferro cellular lightweight concrete insulated panel (FCIP) have been discussed, i.e., structurally stronger than the brick masonry wall and the present forms of SIPs. The FCIP has been tested experimentally under axial compression and flexure loadings. The two different sizes were used for making the experimental test models, viz. A1 of 0.6 m × 0.3 m × 0.09 m and A2 of 1.2 m × 0.6 m × 0.09 m. The test results have been compared with the same-sized brick masonry walls. It was found that the load-taking capacity of A1 size FCIP is 22% larger than the same size brick masonry wall. However, the A2 size FCIP failed at 30% lower stresses than the same size brick masonry wall due to the slenderness effect. On the other hand, in flexure loading, both A1 and A2 size brick masonry walls were found to be weaker than the same size FCIP. Moreover, a theoretical analysis has been carried out to determine the size and slenderness effect on FCIP using Abaqus CAE. The results show that the increase in the thickness of the inner layer (Fcb) of FCIP from 10 to 12 mm and 15 mm helps to improve the load-bearing capacity of A1 size FCIP up to 24% and 63%, respectively. Similarly, the increase in the thickness of the sandwich layer (XPS) from 50 to 100 mm helps to enhance the load-bearing capacity of A1 size FCIP up to 44% without a considerable increase in weight. Subsequently, with theoretical results, a large-size A3 (3.0 m × 1.2 m × 0.145 m) FCIP has been modeled and tested. The results show that the A3 size FCIP having a thickness of 145 mm can replace half brick thick masonry with many structural and thermal applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASTM C274-07 (2018) Standard Terminology of Structural Sandwich Constructions ASTM C274-07 (2018) Standard Terminology of Structural Sandwich Constructions
2.
Zurück zum Zitat Mousa MA, Uddin N (2011) Global buckling of composite structural insulated wall panels. Mater Des 32:766–772CrossRef Mousa MA, Uddin N (2011) Global buckling of composite structural insulated wall panels. Mater Des 32:766–772CrossRef
3.
Zurück zum Zitat CoDyre L, Mak K, Fam A (2018) Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities. J Sandw Struct Mater 20:595–616CrossRef CoDyre L, Mak K, Fam A (2018) Flexural and axial behaviour of sandwich panels with bio-based flax fibre-reinforced polymer skins and various foam core densities. J Sandw Struct Mater 20:595–616CrossRef
4.
Zurück zum Zitat Foo CC, Chai GB, Seah LK (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68:1348–1356CrossRef Foo CC, Chai GB, Seah LK (2008) A model to predict low-velocity impact response and damage in sandwich composites. Compos Sci Technol 68:1348–1356CrossRef
5.
Zurück zum Zitat Li QM, Mines RAW, Birch RS (2000) The crush behaviour of Rohacell-51WF structural foam. Int J Solids Struct 37:6321–6341CrossRef Li QM, Mines RAW, Birch RS (2000) The crush behaviour of Rohacell-51WF structural foam. Int J Solids Struct 37:6321–6341CrossRef
6.
Zurück zum Zitat Da Silva A, Kyriakides S (2007) Compressive response and failure of balsa wood. Int J Solids Struct 44:8685–8717CrossRef Da Silva A, Kyriakides S (2007) Compressive response and failure of balsa wood. Int J Solids Struct 44:8685–8717CrossRef
7.
Zurück zum Zitat Medina MA, King JB, Zhang M (2008) On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs). Energy 33:667–678CrossRef Medina MA, King JB, Zhang M (2008) On the heat transfer rate reduction of structural insulated panels (SIPs) outfitted with phase change materials (PCMs). Energy 33:667–678CrossRef
8.
Zurück zum Zitat Yeh B, Williamson T, Keith E (2008) Development of structural insulated panel standards. Struct Cong 314 Yeh B, Williamson T, Keith E (2008) Development of structural insulated panel standards. Struct Cong 314
9.
Zurück zum Zitat Panjehpour M, Ali AAA, Voo YL (2013) Structural insulated panels: past, present, and future. J Eng Proj Prod Manag 3(1):2–8 Panjehpour M, Ali AAA, Voo YL (2013) Structural insulated panels: past, present, and future. J Eng Proj Prod Manag 3(1):2–8
11.
Zurück zum Zitat Tomlinson DG, Teixeira N, Fam A (2016) New shear connector design for insulated concrete sandwich panels using basalt fiber-reinforced polymer bars. J Compos Constr 20:04016003CrossRef Tomlinson DG, Teixeira N, Fam A (2016) New shear connector design for insulated concrete sandwich panels using basalt fiber-reinforced polymer bars. J Compos Constr 20:04016003CrossRef
12.
Zurück zum Zitat Mugahed Amran YH, Abang Ali AA, Rashid RSM, Hejazi F, Safiee NA (2016) Structural behavior of axially loaded precast foamed concrete sandwich panels. Constr Build Mater 107:307–320CrossRef Mugahed Amran YH, Abang Ali AA, Rashid RSM, Hejazi F, Safiee NA (2016) Structural behavior of axially loaded precast foamed concrete sandwich panels. Constr Build Mater 107:307–320CrossRef
13.
Zurück zum Zitat Benayoune A, Samad AAA, Abang Ali AA, Trikha DN (2007) Response of pre-cast reinforced composite sandwich panels to axial loading. Constr Build Mater 21:677–685CrossRef Benayoune A, Samad AAA, Abang Ali AA, Trikha DN (2007) Response of pre-cast reinforced composite sandwich panels to axial loading. Constr Build Mater 21:677–685CrossRef
14.
Zurück zum Zitat Andena L, Manconi E, Manzoni S, Moschini S, Vanali M (2012) Experimental tests and numerical modeling of a sandwich panel. Int Conf Noise Vib Eng 2012, ISMA 2012, Incl USD 2012 Int Conf Uncertain Struct Dyn 3: 1841–1851 Andena L, Manconi E, Manzoni S, Moschini S, Vanali M (2012) Experimental tests and numerical modeling of a sandwich panel. Int Conf Noise Vib Eng 2012, ISMA 2012, Incl USD 2012 Int Conf Uncertain Struct Dyn 3: 1841–1851
15.
Zurück zum Zitat Smakosz T, Tejchman J (2014) Evaluation of strength, deformability and failure mode of composite structural insulated panels. Mater Des 54:1068–1082CrossRef Smakosz T, Tejchman J (2014) Evaluation of strength, deformability and failure mode of composite structural insulated panels. Mater Des 54:1068–1082CrossRef
16.
Zurück zum Zitat Shawkat W, Honickman H, Fam A (2008) Investigation of a novel composite cladding wall panel in flexure. J Compos Mater 42:315–330CrossRef Shawkat W, Honickman H, Fam A (2008) Investigation of a novel composite cladding wall panel in flexure. J Compos Mater 42:315–330CrossRef
17.
Zurück zum Zitat Sharaf T, Shawkat W, Fam A (2010) Structural performance of sandwich wall panels with different foam core densities in one-way bending. J Compos Mater 44:2249–2263CrossRef Sharaf T, Shawkat W, Fam A (2010) Structural performance of sandwich wall panels with different foam core densities in one-way bending. J Compos Mater 44:2249–2263CrossRef
18.
Zurück zum Zitat Mousa MA, Uddin N (2012) Structural behavior and modeling of full-scale composite structural insulated wall panels. Eng Struct 41:320–334CrossRef Mousa MA, Uddin N (2012) Structural behavior and modeling of full-scale composite structural insulated wall panels. Eng Struct 41:320–334CrossRef
19.
Zurück zum Zitat Vaidya A, Uddin N, Vaidya U (2010) Structural characterization of composite structural insulated panels for exterior wall applications. J Compos Constr 14(4):464–469CrossRef Vaidya A, Uddin N, Vaidya U (2010) Structural characterization of composite structural insulated panels for exterior wall applications. J Compos Constr 14(4):464–469CrossRef
20.
Zurück zum Zitat Fernando PLN, Jayasinghe MTR, Jayasinghe C (2017) Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels. Constr Build Mater 139:45–51CrossRef Fernando PLN, Jayasinghe MTR, Jayasinghe C (2017) Structural feasibility of Expanded Polystyrene (EPS) based lightweight concrete sandwich wall panels. Constr Build Mater 139:45–51CrossRef
21.
Zurück zum Zitat Kermani A, Hairstans R (2006) Racking performance of structural insulated panels. J Struct Eng 132:1806–1812CrossRef Kermani A, Hairstans R (2006) Racking performance of structural insulated panels. J Struct Eng 132:1806–1812CrossRef
22.
Zurück zum Zitat Ferreira R, Pereira D, Gago A, Proença J (2016) Experimental characterisation of cork agglomerate core sandwich panels for wall assemblies in buildings. J Build Eng 5:194–210CrossRef Ferreira R, Pereira D, Gago A, Proença J (2016) Experimental characterisation of cork agglomerate core sandwich panels for wall assemblies in buildings. J Build Eng 5:194–210CrossRef
23.
Zurück zum Zitat Manalo A (2013) Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and Magnesium Oxide board. Constr Build Mater 41:642–653CrossRef Manalo A (2013) Structural behaviour of a prefabricated composite wall system made from rigid polyurethane foam and Magnesium Oxide board. Constr Build Mater 41:642–653CrossRef
24.
Zurück zum Zitat Saha GC, Kalamkarov AL, Georgiades AV (2007) Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials. Compos A Appl Sci Manuf 38:1533–1546CrossRef Saha GC, Kalamkarov AL, Georgiades AV (2007) Effective elastic characteristics of honeycomb sandwich composite shells made of generally orthotropic materials. Compos A Appl Sci Manuf 38:1533–1546CrossRef
25.
Zurück zum Zitat Materials C (2018) ASTM C365/C365M-16, Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, ASTM International, West Conshohocken, PA, 2016. pp 1–8 Materials C (2018) ASTM C365/C365M-16, Standard Test Method for Flatwise Compressive Properties of Sandwich Cores, ASTM International, West Conshohocken, PA, 2016. pp 1–8
26.
Zurück zum Zitat ASTM C513/C513M Standards test method obtaining test. Specimens Hardened Lighting Insulated Concrete Compressive Strength ASTM C513/C513M Standards test method obtaining test. Specimens Hardened Lighting Insulated Concrete Compressive Strength
27.
Zurück zum Zitat Khan MY, Baqi A Development of an improved quality cellular lightweight foamed concrete with low cement content. J Eng Res Khan MY, Baqi A Development of an improved quality cellular lightweight foamed concrete with low cement content. J Eng Res
29.
Zurück zum Zitat Galletti GG, Vinquist C, Es-Said OS (2008) Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending. Eng Fail Anal 15:555–562CrossRef Galletti GG, Vinquist C, Es-Said OS (2008) Theoretical design and analysis of a honeycomb panel sandwich structure loaded in pure bending. Eng Fail Anal 15:555–562CrossRef
30.
Zurück zum Zitat ASTM (1998) E 72-98. Stand. Test Methods Conduct. Strength Tests Panels Build. Constr ASTM (1998) E 72-98. Stand. Test Methods Conduct. Strength Tests Panels Build. Constr
31.
Zurück zum Zitat Units MM (2012) Standard test methods for conducting strength tests of masonry wall panels 1. Annu B ASTM Stand 03:1–6 Units MM (2012) Standard test methods for conducting strength tests of masonry wall panels 1. Annu B ASTM Stand 03:1–6
32.
Zurück zum Zitat D. S. Simulia (2014) Abaqus 6.14. Abaqus 6.14 Anal. User’s Guid D. S. Simulia (2014) Abaqus 6.14. Abaqus 6.14 Anal. User’s Guid
33.
Zurück zum Zitat Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber reinforced materials. J Compos Mater 7:448–464CrossRef Hashin Z, Rotem A (1973) A fatigue failure criterion for fiber reinforced materials. J Compos Mater 7:448–464CrossRef
34.
Zurück zum Zitat Hashin Z (1980) Failure criteria for unidirectional fiber composites Hashin Z (1980) Failure criteria for unidirectional fiber composites
35.
Zurück zum Zitat Ukanwa K, Mohamad N, Lim JBP (2015) Computational finite element modelling of structural behaviours of precast sandwiched foamed concrete slab. Open J Civ Eng 5:220CrossRef Ukanwa K, Mohamad N, Lim JBP (2015) Computational finite element modelling of structural behaviours of precast sandwiched foamed concrete slab. Open J Civ Eng 5:220CrossRef
36.
Zurück zum Zitat Tomlinson D, Fam A (2016) Analysis and parametric study of partially composite precast concrete sandwich panels under axial loads. J Struct Eng 142:04016086CrossRef Tomlinson D, Fam A (2016) Analysis and parametric study of partially composite precast concrete sandwich panels under axial loads. J Struct Eng 142:04016086CrossRef
Metadaten
Titel
Structural behavior of ferro cellular insulated wall panel
verfasst von
M. Y. Khan
A. Baqi
M. R. Sadique
Publikationsdatum
01.12.2021
Verlag
Springer International Publishing
Erschienen in
Innovative Infrastructure Solutions / Ausgabe 4/2021
Print ISSN: 2364-4176
Elektronische ISSN: 2364-4184
DOI
https://doi.org/10.1007/s41062-021-00596-9

Weitere Artikel der Ausgabe 4/2021

Innovative Infrastructure Solutions 4/2021 Zur Ausgabe