Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 9/2018

31.07.2018

Structural Evolution in Mechanically Alloyed and Spark Plasma Sintered Iron–0.15 wt.% MWCNT Composite

verfasst von: Priyanka Sharma, Akshay Kumar, M. K. Banerjee

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 9/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High-energy ball milling (HEBM) of mixtures of iron powder and multi-walled carbon nanotube (MWCNT) has been performed in an attempt to synthesize nano-grained steel. Even after exposure to a harsh HEBM conditions, the MWCNTs are seen to have retained their structural identity, and therefore, an MWCNT-reinforced steel matrix composite could be finally produced. Moreover, the study has revealed that the minor addition of copper leads to a significant reduction in grain size of ferrite in the so-produced steel matrix–MWCNT composite. It is also noticed that the fine grain structure of ferrite remains intact even after consolidation of the powder composite by spark plasma sintering, followed by hot forging. The micro-hardness values obtained for the composites (with/without copper) are observed as comparable with the submicron-grained steels, so far reported in the literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24, p 101–108CrossRef M. Rashad, F. Pan, A. Tang, and M. Asif, Effect of Graphene Nanoplatelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24, p 101–108CrossRef
2.
Zurück zum Zitat M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Prog. Nat. Sci. Mater. Int., 2015, 25, p 460–470CrossRef M. Rashad, F. Pan, Z. Yu, M. Asif, H. Lin, and R. Pan, Investigation on Microstructural, Mechanical and Electrochemical Properties of Aluminum Composites Reinforced with Graphene Nanoplatelets, Prog. Nat. Sci. Mater. Int., 2015, 25, p 460–470CrossRef
3.
Zurück zum Zitat E.T. Thostenson, Z. Rez, and T.-W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review, Compos. Sci. Technol., 2001, 61, p 1899–1912CrossRef E.T. Thostenson, Z. Rez, and T.-W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review, Compos. Sci. Technol., 2001, 61, p 1899–1912CrossRef
4.
Zurück zum Zitat W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites, Acta Mater., 2017, 125, p 369–376CrossRef W. Zhou, T. Yamaguchi, K. Kikuchi, N. Nomura, and A. Kawasaki, Effectively Enhanced Load Transfer by Interfacial Reactions in Multi-Walled Carbon Nanotube Reinforced Al Matrix Composites, Acta Mater., 2017, 125, p 369–376CrossRef
5.
Zurück zum Zitat A. Kumar, M.K. Banerjee, and U. Pandel, Development of a Novel MWCNT Reinforced Iron Matrix Nanocomposite Through Powder Metallurgy Route, Powder Technol., 2018, 331, p 41–51CrossRef A. Kumar, M.K. Banerjee, and U. Pandel, Development of a Novel MWCNT Reinforced Iron Matrix Nanocomposite Through Powder Metallurgy Route, Powder Technol., 2018, 331, p 41–51CrossRef
6.
Zurück zum Zitat N. Silvestre, State-of-the-art Review on Carbon Nanotube Reinforced Metal Matrix Composites, Int. J. Compos. Mater., 2013, 3(6A), p 28–44 N. Silvestre, State-of-the-art Review on Carbon Nanotube Reinforced Metal Matrix Composites, Int. J. Compos. Mater., 2013, 3(6A), p 28–44
7.
Zurück zum Zitat K.S. Munir, Y. Li, M. Qian, and C. Wen, Identifying and Understanding the Effect of Milling Energy on the Synthesis of Carbon Nanotubes Reinforced Titanium Metal Matrix Composites, Carbon, 2016, 99, p 384–397CrossRef K.S. Munir, Y. Li, M. Qian, and C. Wen, Identifying and Understanding the Effect of Milling Energy on the Synthesis of Carbon Nanotubes Reinforced Titanium Metal Matrix Composites, Carbon, 2016, 99, p 384–397CrossRef
8.
Zurück zum Zitat B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, and K. Kondoh, Solid-State Interfacial Reaction and Load Transfer Efficiency in Carbon Nanotubes (CNTs)-Reinforced Aluminum Matrix Composites, Carbon, 2017, 114, p 198–208CrossRef B. Chen, J. Shen, X. Ye, H. Imai, J. Umeda, M. Takahashi, and K. Kondoh, Solid-State Interfacial Reaction and Load Transfer Efficiency in Carbon Nanotubes (CNTs)-Reinforced Aluminum Matrix Composites, Carbon, 2017, 114, p 198–208CrossRef
9.
Zurück zum Zitat A. Singh, T.R. Prabhu, A.R. Sanjay, and V. Koti, An Overview of Processing and Properties of CU/CNT Nano Composites, Mater. Today Proc., 2017, 4, p 3872–3881CrossRef A. Singh, T.R. Prabhu, A.R. Sanjay, and V. Koti, An Overview of Processing and Properties of CU/CNT Nano Composites, Mater. Today Proc., 2017, 4, p 3872–3881CrossRef
10.
Zurück zum Zitat N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, and P.V. Venkitakrishnan, Processing and Characterization of Spark Plasma Sintered Copper/Carbon Nanotube Composites, Mater. Sci. Eng., A, 2017, 682(229-237), p 229–237CrossRef N. Nayan, A.K. Shukla, P. Chandran, S.R. Bakshi, S.V.S.N. Murty, B. Pant, and P.V. Venkitakrishnan, Processing and Characterization of Spark Plasma Sintered Copper/Carbon Nanotube Composites, Mater. Sci. Eng., A, 2017, 682(229-237), p 229–237CrossRef
12.
Zurück zum Zitat A.M.K. Esawi and M.M. Farag, Carbon Nanotube Reinforced Composites: Potential and Current Challenges, Mater. Des., 2007, 28, p 2394–2401CrossRef A.M.K. Esawi and M.M. Farag, Carbon Nanotube Reinforced Composites: Potential and Current Challenges, Mater. Des., 2007, 28, p 2394–2401CrossRef
13.
Zurück zum Zitat S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64CrossRef S.R. Bakshi, D. Lahiri, and A. Agarwal, Carbon Nanotube Reinforced Metal Matrix Composites—A Review, Int. Mater. Rev., 2010, 55, p 41–64CrossRef
14.
Zurück zum Zitat I. Lahiri and S. Bhargava, Compaction and Sintering Response of Mechanically Alloyed Cu–Cr Powder, Powder Technol., 2009, 189, p 395–528CrossRef I. Lahiri and S. Bhargava, Compaction and Sintering Response of Mechanically Alloyed Cu–Cr Powder, Powder Technol., 2009, 189, p 395–528CrossRef
15.
Zurück zum Zitat T. Kuzumaki, O. Ujiie, H. Ichinose, and K. Ito, Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite, Adv. Eng. Mater., 2000, 2, p 416–418CrossRef T. Kuzumaki, O. Ujiie, H. Ichinose, and K. Ito, Mechanical Characteristics and Preparation of Carbon Nanotube Fiber-Reinforced Ti Composite, Adv. Eng. Mater., 2000, 2, p 416–418CrossRef
16.
Zurück zum Zitat R.P. Bustamante, I.E. Guel, W.A. Flores, M.M. Yoshida, P.J. Ferreira, and R.M. Sánchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-Walled Carbon Nanotube, J. Alloys Compd., 2008, 450, p 323–326CrossRef R.P. Bustamante, I.E. Guel, W.A. Flores, M.M. Yoshida, P.J. Ferreira, and R.M. Sánchez, Novel Al-Matrix Nanocomposites Reinforced with Multi-Walled Carbon Nanotube, J. Alloys Compd., 2008, 450, p 323–326CrossRef
17.
Zurück zum Zitat W.J. Kim and S.H. Lee, High Temperature Deformation Behavior of Carbon Nanotube (CNT)-Reinforced Aluminum Composites and Prediction of Their High-Temperature Strength, Compos. A, 2014, 67, p 308–315CrossRef W.J. Kim and S.H. Lee, High Temperature Deformation Behavior of Carbon Nanotube (CNT)-Reinforced Aluminum Composites and Prediction of Their High-Temperature Strength, Compos. A, 2014, 67, p 308–315CrossRef
18.
Zurück zum Zitat A. Kumar, U. Pandel, and M.K. Banerjee, Effect of High Energy Ball Milling on the Structure of Iron—Multiwall Carbon Nanotubes (MWCNT) Composite, Adv. Mater. Res., 2017, 6, p 245–255 A. Kumar, U. Pandel, and M.K. Banerjee, Effect of High Energy Ball Milling on the Structure of Iron—Multiwall Carbon Nanotubes (MWCNT) Composite, Adv. Mater. Res., 2017, 6, p 245–255
19.
Zurück zum Zitat C. Edtmaier, E. Wallnoefer, A. Koeck, in Proceedings of PM 2004, Vienna, Austria, 2004 C. Edtmaier, E. Wallnoefer, A. Koeck, in Proceedings of PM 2004, Vienna, Austria, 2004
20.
Zurück zum Zitat Z. Tao, H. Geng, K. Yu, Z. Yang, and Y. Wang, Effect of High-Energy Ball Milling on the Morphology and the Field Emission Property of Multi-Walled Carbon Nanotubes, Mater. Lett., 2004, 58, p 3410–3413CrossRef Z. Tao, H. Geng, K. Yu, Z. Yang, and Y. Wang, Effect of High-Energy Ball Milling on the Morphology and the Field Emission Property of Multi-Walled Carbon Nanotubes, Mater. Lett., 2004, 58, p 3410–3413CrossRef
21.
Zurück zum Zitat C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2007, 444, p 138–145CrossRef C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and Properties of Carbon Nanotubes Reinforced Aluminum Composites, Mater. Sci. Eng., A, 2007, 444, p 138–145CrossRef
22.
Zurück zum Zitat S. Praveen, B.S. Murty, and R.S. Kottada, Alloying Behavior in Multi-Component AlCoCrCuFe and NiCoCrCuFe High Entropy Alloys, Mater. Sci. Eng., A, 2012, 534, p 83–89CrossRef S. Praveen, B.S. Murty, and R.S. Kottada, Alloying Behavior in Multi-Component AlCoCrCuFe and NiCoCrCuFe High Entropy Alloys, Mater. Sci. Eng., A, 2012, 534, p 83–89CrossRef
23.
Zurück zum Zitat K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott, D.M. Zhu, and C. Wen, Quantitative Analyses of MWCNT-Ti Powder Mixtures Using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution, Adv. Eng. Mater., 2015, 17, p 1660–1669CrossRef K.S. Munir, M. Qian, Y. Li, D.T. Oldfield, P. Kingshott, D.M. Zhu, and C. Wen, Quantitative Analyses of MWCNT-Ti Powder Mixtures Using Raman Spectroscopy: The Influence of Milling Parameters on Nanostructural Evolution, Adv. Eng. Mater., 2015, 17, p 1660–1669CrossRef
24.
Zurück zum Zitat S. Simões, F. Viana, M.A.L. Reis, and M.F. Vieira, Improved Dispersion of Carbon Nanotubes in Aluminum Nanocomposites, Compos. Struct., 2014, 108, p 992–1000CrossRef S. Simões, F. Viana, M.A.L. Reis, and M.F. Vieira, Improved Dispersion of Carbon Nanotubes in Aluminum Nanocomposites, Compos. Struct., 2014, 108, p 992–1000CrossRef
25.
Zurück zum Zitat A.A. Tohidi, M. Ketabchi, and A. Hasannia, Nanograined Ti–Nb Microalloy Steel Achieved by Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng., A, 2013, 577, p 43–47CrossRef A.A. Tohidi, M. Ketabchi, and A. Hasannia, Nanograined Ti–Nb Microalloy Steel Achieved by Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng., A, 2013, 577, p 43–47CrossRef
26.
Zurück zum Zitat Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon, Processing of a Low-Carbon Steel by Equal Channel Angular Pressing, Acta Mater., 2002, 50, p 1359–1368CrossRef Y. Fukuda, K. Oh-ishi, Z. Horita, and T.G. Langdon, Processing of a Low-Carbon Steel by Equal Channel Angular Pressing, Acta Mater., 2002, 50, p 1359–1368CrossRef
27.
Zurück zum Zitat F. Saba, S.A. Sajjadi, M.H. Sabzevar, and F. Zhang, Formation Mechanism of Nano Titanium Carbide on Multi-Walled Carbon Nanotube and Influence of the Nanocarbides on the Load-Bearing Contribution of the Nanotubes Inner-Walls in Aluminum-Matrix Composites, Carbon, 2017, 115, p 720–729CrossRef F. Saba, S.A. Sajjadi, M.H. Sabzevar, and F. Zhang, Formation Mechanism of Nano Titanium Carbide on Multi-Walled Carbon Nanotube and Influence of the Nanocarbides on the Load-Bearing Contribution of the Nanotubes Inner-Walls in Aluminum-Matrix Composites, Carbon, 2017, 115, p 720–729CrossRef
28.
Zurück zum Zitat M. Barzegar and A.A. Vishlaghi, Investigation on Solid Solubility and Physical Properties of Cu–Fe/CNT Nano-Composite Prepared via Mechanical Alloying Route, J. Ultrafine Grained Nanostruct. Mater., 2014, 47, p 37–42 M. Barzegar and A.A. Vishlaghi, Investigation on Solid Solubility and Physical Properties of Cu–Fe/CNT Nano-Composite Prepared via Mechanical Alloying Route, J. Ultrafine Grained Nanostruct. Mater., 2014, 47, p 37–42
29.
Zurück zum Zitat P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, A Comparison Between Raman Spectroscopy and Surface Characterizations of Multiwall Carbon Nanotubes, Carbon, 2006, 44, p 3005–3013CrossRef P. Delhaes, M. Couzi, M. Trinquecoste, J. Dentzer, H. Hamidou, and C. Vix-Guterl, A Comparison Between Raman Spectroscopy and Surface Characterizations of Multiwall Carbon Nanotubes, Carbon, 2006, 44, p 3005–3013CrossRef
30.
Zurück zum Zitat J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, and V. Meunier, Evaluating the Characteristics of Multiwall Carbon Nanotubes, Carbon, 2011, 49, p 2581–2602CrossRef J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, and V. Meunier, Evaluating the Characteristics of Multiwall Carbon Nanotubes, Carbon, 2011, 49, p 2581–2602CrossRef
31.
Zurück zum Zitat N.S. Anas, R.K. Dash, T.N. Rao, and R. Vijay, Effect of Carbon Nanotubes as Reinforcement on the Mechanical Properties of Aluminum-Copper-Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26(7), p 3376–3386CrossRef N.S. Anas, R.K. Dash, T.N. Rao, and R. Vijay, Effect of Carbon Nanotubes as Reinforcement on the Mechanical Properties of Aluminum-Copper-Magnesium Alloy, J. Mater. Eng. Perform., 2017, 26(7), p 3376–3386CrossRef
32.
Zurück zum Zitat L. Wu, R. Wu, L. Hou, J. Zhang, J. Sun, and M. Zhang, Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering, J. Mater. Eng. Perform., 2017, 26(11), p 5495–5500CrossRef L. Wu, R. Wu, L. Hou, J. Zhang, J. Sun, and M. Zhang, Microstructure and Mechanical Properties of CNT-Reinforced AZ31 Matrix Composites Prepared Using Hot-Press Sintering, J. Mater. Eng. Perform., 2017, 26(11), p 5495–5500CrossRef
Metadaten
Titel
Structural Evolution in Mechanically Alloyed and Spark Plasma Sintered Iron–0.15 wt.% MWCNT Composite
verfasst von
Priyanka Sharma
Akshay Kumar
M. K. Banerjee
Publikationsdatum
31.07.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 9/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3547-8

Weitere Artikel der Ausgabe 9/2018

Journal of Materials Engineering and Performance 9/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.