Skip to main content
Erschienen in: Metal Science and Heat Treatment 1-2/2020

20.06.2020

Structural Features of Cast Refractory Alloy HP40NbTi High-Temperature Oxidation. Part 2. Microstructure and Phase Composition Evolution

verfasst von: S. Yu. Kondrat’ev, S. N. Petrov, G. P. Anastasiadi, A. V. Tsemenko

Erschienen in: Metal Science and Heat Treatment | Ausgabe 1-2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optical and electron microscopy and x-ray spectral microanalysis are used to study the transformation of the phases present in the structure of cast refractory alloy HP40NbTi during prolonged high-temperature oxidation. It is established that during oxidation alloy phase chemical composition changes continuously and by complex laws in relation to the surroundings, temperature, and exposure duration, and there is rapid exchange of chemical elements between different phases. After prolonged exposure this process reaches a limiting condition.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Here and subsequently through the text the element content is shown in weight fractions expressed as a %, with the exception of specially stipulated cases.
 
Literatur
1.
Zurück zum Zitat M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes. History of evolution,” Arch. Foundry Eng., 11, Special Issue 2, 47 – 52 (2011). M. Garbiak, W. Jasinski, and B. Piekarski, “Materials for reformer furnace tubes. History of evolution,” Arch. Foundry Eng., 11, Special Issue 2, 47 – 52 (2011).
2.
Zurück zum Zitat D. J. Tillack and J. E. Guthrie, “Wrought and cast heat-resistant stainless steels and nickel alloys for the refining and petrochemical industries,” Nickel Development Institute (Toronto), Technical Ser., No. 10, 71 – 85 (1998). D. J. Tillack and J. E. Guthrie, “Wrought and cast heat-resistant stainless steels and nickel alloys for the refining and petrochemical industries,” Nickel Development Institute (Toronto), Technical Ser., No. 10, 71 – 85 (1998).
3.
Zurück zum Zitat E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater., 49(2), 117 – 122 (2003).CrossRef E. A. Kenik, P. J. Maziasz, R. W. Swindeman, et al., “Structure and phase stability in cast modified-HP austenite after long-term ageing,” Scr. Mater., 49(2), 117 – 122 (2003).CrossRef
4.
Zurück zum Zitat A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat., 55(3 – 4), 209 – 215 (2013). A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Special features of structure and long-term strength of cast refractory alloy 45Kh26N33S2B2,” Met. Sci. Heat Treat., 55(3 – 4), 209 – 215 (2013).
5.
Zurück zum Zitat A. I. Rudskoy, A. S. Oryshchenko, G. P. Anastasiadi, et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb during a long-term high-temperature hold,” Met. Sci. Heat Treat., 55(9 – 10), 517 – 525 (2014). A. I. Rudskoy, A. S. Oryshchenko, G. P. Anastasiadi, et al., “Transformation of the structure of refractory alloy 0.45C – 26Cr – 33Ni – 2Si – 2Nb during a long-term high-temperature hold,” Met. Sci. Heat Treat., 55(9 – 10), 517 – 525 (2014).
6.
Zurück zum Zitat Antonello Alvino, Daniela Lega, Francesco Giacobbe, et al. “Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions,” Eng. Failure Anal., 17(7 – 8), 1526 – 1541 (2010). Antonello Alvino, Daniela Lega, Francesco Giacobbe, et al. “Damage characterization in two reformer heater tubes after nearly 10 years of service at different operative and maintenance conditions,” Eng. Failure Anal., 17(7 – 8), 1526 – 1541 (2010).
7.
Zurück zum Zitat Zhichao Zhu, Congqian Cheng, Jie Zhao, and Lu Wang, “High temperature corrosion and microstructure deterioration of KHR35H radiant tubes in continuous annealing furnace,” Eng. Failure Anal., 21, 59 – 66 (2012). Zhichao Zhu, Congqian Cheng, Jie Zhao, and Lu Wang, “High temperature corrosion and microstructure deterioration of KHR35H radiant tubes in continuous annealing furnace,” Eng. Failure Anal., 21, 59 – 66 (2012).
8.
Zurück zum Zitat A. A. Kaya, P. Krauklis, and D. J. Young, “Microstructure of HK40 alloy after high-temperature service in oxidizing carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Charact., 49(1), 11 – 21 (2002).CrossRef A. A. Kaya, P. Krauklis, and D. J. Young, “Microstructure of HK40 alloy after high-temperature service in oxidizing carburizing environment: I. Oxidation phenomena and propagation of a crack,” Mater. Charact., 49(1), 11 – 21 (2002).CrossRef
9.
Zurück zum Zitat A. A. Kaya, “Microstructure of HK40 alloy after high-temperature service in oxidizing-carburizing environment: II. Carburization and carbide transformations,” Mater. Charact., 49(1), 23 – 34 (2002).CrossRef A. A. Kaya, “Microstructure of HK40 alloy after high-temperature service in oxidizing-carburizing environment: II. Carburization and carbide transformations,” Mater. Charact., 49(1), 23 – 34 (2002).CrossRef
10.
Zurück zum Zitat L. H. De Almeida, A. F. Ribeiro, and I. Le May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2003).CrossRef L. H. De Almeida, A. F. Ribeiro, and I. Le May, “Microstructural characterization of modified 25Cr – 35Ni centrifugally cast steel furnace tubes,” Mater. Charact., 49(3), 219 – 229 (2003).CrossRef
11.
Zurück zum Zitat F. C. Nunes, L. H. De Almeida, J. Dille, et al., “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels,” Mater. Charact., 58, 132 – 142 (2007).CrossRef F. C. Nunes, L. H. De Almeida, J. Dille, et al., “Microstructural changes caused by yttrium addition to NbTi-modified centrifugally cast HP-type stainless steels,” Mater. Charact., 58, 132 – 142 (2007).CrossRef
12.
Zurück zum Zitat A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat., 56(1 – 2), 3 – 8 (2014). A. I. Rudskoy, A. S. Oryshchenko, S. Yu. Kondrat’ev, et al., “Mechanisms and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 in long-term high-temperature holds. Part 1,” Met. Sci. Heat Treat., 56(1 – 2), 3 – 8 (2014).
13.
Zurück zum Zitat A. I. Rudskoy, S. Yu., Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat., 56(3 – 4), 124 – 130 (2014). A. I. Rudskoy, S. Yu., Kondrat’ev, G. P. Anastasiadi, et al., “Mechanism and kinetics of phase transformations in refractory alloy 45Kh26N33S2B2 under long-term high-temperature holds. Part 2,” Met. Sci. Heat Treat., 56(3 – 4), 124 – 130 (2014).
14.
Zurück zum Zitat L. S. Monobe and C. G. Schõn, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the as cast and aged states,” J. Mater. Res. Technol., 2(2), 195 – 201 (2013).CrossRef L. S. Monobe and C. G. Schõn, “Microstructural and fractographic investigation of a centrifugally cast 20Cr32Ni + Nb alloy tube in the as cast and aged states,” J. Mater. Res. Technol., 2(2), 195 – 201 (2013).CrossRef
15.
Zurück zum Zitat K. G., Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A, 43A(6), 1760 – 1769 (2012). K. G., Buchanan and M. V. Kral, “Crystallography and morphology of niobium carbide in as-cast HP-niobium reformer tubes,” Metall. Mater. Trans. A, 43A(6), 1760 – 1769 (2012).
16.
Zurück zum Zitat K. G. Buchanan, M. V. Kral, and C. M. Bishop, “Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys,” Metall. Mater. Trans. A, 45A(8), 3373 – 3385 (2014).CrossRef K. G. Buchanan, M. V. Kral, and C. M. Bishop, “Crystallography and morphology of MC carbides in niobium-titanium modified as-cast HP alloys,” Metall. Mater. Trans. A, 45A(8), 3373 – 3385 (2014).CrossRef
17.
Zurück zum Zitat A. I. Rudskoi, G. P. Anastasiadi, S. Yu. Kondrat’ev, et al., “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C – 26Cr – 33Ni – 2Si – 2Nb superalloy,” Phys. Met. Metallogr., 115(1), 1 – 11 (2014). A. I. Rudskoi, G. P. Anastasiadi, S. Yu. Kondrat’ev, et al., “Effect of electron factor (number of electron holes) on kinetics of nucleation, growth, and dissolution of phases during long-term high-temperature holdings of 0.45C – 26Cr – 33Ni – 2Si – 2Nb superalloy,” Phys. Met. Metallogr., 115(1), 1 – 11 (2014).
18.
Zurück zum Zitat T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol., 17(1), 1 – 14 (2001).CrossRef T. Sourmail, “Precipitates in creep resistant austenitic stainless steels,” Mater. Sci. Technol., 17(1), 1 – 14 (2001).CrossRef
19.
Zurück zum Zitat G. F. Vander Voort, G. M. Lucas, and E. P. Manilova, “Metallography and Microstructures of Heat-Resistant Alloys,” in: J. R. Davis, at al. (eds.), ASM Handbook, Vol. 9. Metallography and Microstructures, ASM International (2004). G. F. Vander Voort, G. M. Lucas, and E. P. Manilova, “Metallography and Microstructures of Heat-Resistant Alloys,” in: J. R. Davis, at al. (eds.), ASM Handbook, Vol. 9. Metallography and Microstructures, ASM International (2004).
20.
Zurück zum Zitat R. A. P. Ibanez, G. D. De Almeida Soares, L. H. De Almeida, and I. Le May, “Effects of Si content on the microstructure of modified-HP austenitic steels,” Mater. Charact., 30, 243 – 249 (1993).CrossRef R. A. P. Ibanez, G. D. De Almeida Soares, L. H. De Almeida, and I. Le May, “Effects of Si content on the microstructure of modified-HP austenitic steels,” Mater. Charact., 30, 243 – 249 (1993).CrossRef
21.
Zurück zum Zitat G. P. Anastasiadi, S. Yu. Kondrat’ev, and A. I. Rudskoy, “Selective high-temperature oxidation of phases in a cast refractory alloy of the 25Cr – 35Ni – Si – Nb – C system,” Met. Sci. Heat Treat., 56(7 – 8), 403 – 408 (2014). G. P. Anastasiadi, S. Yu. Kondrat’ev, and A. I. Rudskoy, “Selective high-temperature oxidation of phases in a cast refractory alloy of the 25Cr – 35Ni – Si – Nb – C system,” Met. Sci. Heat Treat., 56(7 – 8), 403 – 408 (2014).
22.
Zurück zum Zitat S. Yu. Kondrat’ev, G. P. Anastasiadi, and A. I. Rudskoy, “Nanostructure mechanism of formation of oxide film in heat-resistant Fe – 25Cr – 35Ni superalloys,” Met. Sci. Heat Treat., 56(9 – 10), 531 – 536 (2015). S. Yu. Kondrat’ev, G. P. Anastasiadi, and A. I. Rudskoy, “Nanostructure mechanism of formation of oxide film in heat-resistant Fe – 25Cr – 35Ni superalloys,” Met. Sci. Heat Treat., 56(9 – 10), 531 – 536 (2015).
23.
Zurück zum Zitat N. McIntyre, N. Chan, and C. Chen, “Characterization of oxide structures formed on nickel-chromium alloy during low pressure oxidation at 500 – 600°C,” Oxidation Met., 33(5 – 6), 458 – 479 (1990). N. McIntyre, N. Chan, and C. Chen, “Characterization of oxide structures formed on nickel-chromium alloy during low pressure oxidation at 500 – 600°C,” Oxidation Met., 33(5 – 6), 458 – 479 (1990).
24.
Zurück zum Zitat A. P. Babichev, N. A. Babushkina, A. M. Bratkovskaya, et al., Physical Values: Handbook [in Russian], Énergoaromizdat, Moscow (1991). A. P. Babichev, N. A. Babushkina, A. M. Bratkovskaya, et al., Physical Values: Handbook [in Russian], Énergoaromizdat, Moscow (1991).
25.
Zurück zum Zitat V. A. Ryabin, M. V. Kireeva, N. A. Berg, et al., Inorganic Chromium Compounds [in Russian], Khimiya, Leningrad (1981). V. A. Ryabin, M. V. Kireeva, N. A. Berg, et al., Inorganic Chromium Compounds [in Russian], Khimiya, Leningrad (1981).
26.
Zurück zum Zitat S. Yu., Kondrat’ev, E. V. Sviatysheva, G. P. Anastasiadi, and S. N. Petrov, “Fragmented structure of niobium carbide particles in as-cast modified HP alloys,” Acta Mater., 127, 267 – 276 (2017). S. Yu., Kondrat’ev, E. V. Sviatysheva, G. P. Anastasiadi, and S. N. Petrov, “Fragmented structure of niobium carbide particles in as-cast modified HP alloys,” Acta Mater., 127, 267 – 276 (2017).
27.
Zurück zum Zitat I. P. Fedorov, Chemical Encyclopedia. Vol. 5, Chromium Oxides [in Russian], Izd. Bol. Ross. Ents., Moscow (1999). I. P. Fedorov, Chemical Encyclopedia. Vol. 5, Chromium Oxides [in Russian], Izd. Bol. Ross. Ents., Moscow (1999).
28.
Zurück zum Zitat R. Zapa’a and B. Kalandyk, “Identification of scale formed on Cr – Ni cast steel,” Arch. Foundry Eng., 10(4), 217 – 220 (2010). R. Zapa’a and B. Kalandyk, “Identification of scale formed on Cr – Ni cast steel,” Arch. Foundry Eng., 10(4), 217 – 220 (2010).
29.
Zurück zum Zitat Raluca Voicu, Eric Andrieu, Dominique Poquillon, et al., “Microstructure evolution of HP40-Nb alloys during aging under air at 1000°C,” Mater. Charact., 60(9), 1020 – 1027 (2009). Raluca Voicu, Eric Andrieu, Dominique Poquillon, et al., “Microstructure evolution of HP40-Nb alloys during aging under air at 1000°C,” Mater. Charact., 60(9), 1020 – 1027 (2009).
30.
Zurück zum Zitat S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscope,” Met. Sci. Heat Treat., 57(7 – 8), 402 – 409 (2015). S. Yu. Kondrat’ev, A. V. Ptashnik, G. P. Anastasiadi, and S. N. Petrov, “Analysis of transformations of carbide phases in alloy 25Cr35Ni by the method of quantitative electron microscope,” Met. Sci. Heat Treat., 57(7 – 8), 402 – 409 (2015).
31.
Zurück zum Zitat L. H., Koopmans, D. B. Owen, and J. I. Rosenblatt, “Confidence intervals for the coefficient of variation for the normal and log normal distributions,” Biometrika, 51(1 – 2), 25 – 32 (1964). L. H., Koopmans, D. B. Owen, and J. I. Rosenblatt, “Confidence intervals for the coefficient of variation for the normal and log normal distributions,” Biometrika, 51(1 – 2), 25 – 32 (1964).
32.
Zurück zum Zitat J. K. Patel, N. M. Patel, and R. I. Shiyani, “Coefficient of variation in field experiments and yardstick thereof — An empirical study,” Current Sci., 81(9 – 10), 1163 – 1164 (2001). J. K. Patel, N. M. Patel, and R. I. Shiyani, “Coefficient of variation in field experiments and yardstick thereof — An empirical study,” Current Sci., 81(9 – 10), 1163 – 1164 (2001).
33.
Zurück zum Zitat A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, “Sigma phase formation and embrittlement of cast iron-chromium- nickel (Fe – Cr – Ni) alloys,” J. Miner. Mater. Char. Eng., 7, 127 – 145 (2008). A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, “Sigma phase formation and embrittlement of cast iron-chromium- nickel (Fe – Cr – Ni) alloys,” J. Miner. Mater. Char. Eng., 7, 127 – 145 (2008).
34.
Zurück zum Zitat S. Y. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, and A. V. Ptashnik, “Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure,” Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 48(1), 482 – 492 (2017).CrossRef S. Y. Kondrat’ev, G. P. Anastasiadi, S. N. Petrov, and A. V. Ptashnik, “Kinetics of the formation of intermetallic phases in HP-type heat-resistant alloys at long-term high-temperature exposure,” Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 48(1), 482 – 492 (2017).CrossRef
35.
Zurück zum Zitat R. F. Voitovich and É. A Pugach, Refractory Compound Oxidation: Handbook [in Russian], Metallurgiya, Moscow (1978). R. F. Voitovich and É. A Pugach, Refractory Compound Oxidation: Handbook [in Russian], Metallurgiya, Moscow (1978).
Metadaten
Titel
Structural Features of Cast Refractory Alloy HP40NbTi High-Temperature Oxidation. Part 2. Microstructure and Phase Composition Evolution
verfasst von
S. Yu. Kondrat’ev
S. N. Petrov
G. P. Anastasiadi
A. V. Tsemenko
Publikationsdatum
20.06.2020
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 1-2/2020
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-020-00511-6

Weitere Artikel der Ausgabe 1-2/2020

Metal Science and Heat Treatment 1-2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.