Skip to main content

2020 | OriginalPaper | Buchkapitel

Structure and Surface Morphology Techniques for Biopolymers

verfasst von : Sabarish Radoor, Jasila Karayil, Aswathy Jayakumar, E. K. Radhakrishnan, Lakshmanan Muthulakshmi, Sanjay Mavinkere Rangappa, Suchart Siengchin, Jyotishkumar Parameswaranpillai

Erschienen in: Biofibers and Biopolymers for Biocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Different techniques such as optical microscopy, scanning electron microscopy, transmission electron microscopy, atomic force microscopy, nuclear magnetic resonance, X-ray diffraction, and Fourier-transform infrared spectroscopy are used for the examination of biopolymer-based materials. This chapter discusses the characterisation of structure and surface morphology of the biopolymers, their blends, and composites by these techniques. A careful examination of biopolymers, their blends and composites are essential for the fruitful application of these materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grumezescu, A. M. (2017). Food packaging. Amsterdam; Boston: AP/Elsevier, 768 pp. Grumezescu, A. M. (2017). Food packaging. Amsterdam; Boston: AP/Elsevier, 768 pp.
2.
Zurück zum Zitat Poole-Warren, L., Martens, P., & Green, R. (2015). Biosynthetic polymers for medical applications. Elsevier. Poole-Warren, L., Martens, P., & Green, R. (2015). Biosynthetic polymers for medical applications. Elsevier.
3.
Zurück zum Zitat Grumezescu, A. M. (2016). Nanobiomaterials in Galenic formulations and cosmetics: Applications of nanobiomaterials. Amsterdam; Boston: Elsevier/WA, William Andrew is an imprint of Elsevier, 433 pp. Grumezescu, A. M. (2016). Nanobiomaterials in Galenic formulations and cosmetics: Applications of nanobiomaterials. Amsterdam; Boston: Elsevier/WA, William Andrew is an imprint of Elsevier, 433 pp.
4.
Zurück zum Zitat Bajpai, P. (2019). Biobased polymers: Properties and applications (1st ed.). Cambridge: Elsevier, 250 pp. Bajpai, P. (2019). Biobased polymers: Properties and applications (1st ed.). Cambridge: Elsevier, 250 pp.
5.
Zurück zum Zitat Das, T. K., & Prusty, S. (2017). Biopolymer composites in field-effect transistors. In Biopolymer composites in electronics (pp. 219–229). Elsevier. Das, T. K., & Prusty, S. (2017). Biopolymer composites in field-effect transistors. In Biopolymer composites in electronics (pp. 219–229). Elsevier.
6.
Zurück zum Zitat Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81–124). Woodhead Publishing. Epp, J. (2016). X-ray diffraction (XRD) techniques for materials characterization. In Materials characterization using nondestructive evaluation (NDE) methods (pp. 81–124). Woodhead Publishing.
7.
Zurück zum Zitat Chatterjee, A. K. (2000). X-ray diffraction. In Handbook of analytical techniques in concrete science and technology (pp. 275–332).CrossRef Chatterjee, A. K. (2000). X-ray diffraction. In Handbook of analytical techniques in concrete science and technology (pp. 275–332).CrossRef
10.
Zurück zum Zitat Cohuo, S. C. P., Escamilla, G. C., González, A. V., Escamilla, V. V. A. F., & Calderon, J. U. (2018). Production and modification of cellulose nanocrystals from Agave tequilana weber waste and is effect on the melt rheology of PLA. International Journal of Polymer Science. https://doi.org/10.1155/2018/3567901.CrossRef Cohuo, S. C. P., Escamilla, G. C., González, A. V., Escamilla, V. V. A. F., & Calderon, J. U. (2018). Production and modification of cellulose nanocrystals from Agave tequilana weber waste and is effect on the melt rheology of PLA. International Journal of Polymer Science. https://​doi.​org/​10.​1155/​2018/​3567901.CrossRef
11.
Zurück zum Zitat Gupta, K. K., Mishra, P. K., Srivastava, P., Gangwar, M., Nath, G., & Maiti, P. (2013). Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibers. Applied Surface Science,264, 375–382.CrossRef Gupta, K. K., Mishra, P. K., Srivastava, P., Gangwar, M., Nath, G., & Maiti, P. (2013). Hydrothermal in situ preparation of TiO2 particles onto poly(lactic acid) electrospun nanofibers. Applied Surface Science,264, 375–382.CrossRef
13.
Zurück zum Zitat Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Rahman, R. A., Jokar, M., et al. (2010). Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. International Journal of Nanomedicine,5, 573–579.CrossRef Shameli, K., Ahmad, M. B., Yunus, W. M. Z. W., Ibrahim, N. A., Rahman, R. A., Jokar, M., et al. (2010). Silver/poly (lactic acid) nanocomposites: preparation, characterization, and antibacterial activity. International Journal of Nanomedicine,5, 573–579.CrossRef
15.
Zurück zum Zitat Rajkumar, M., Meenakshisundaram, N., & Rajendran, V. (2011). Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Materials Characterization,62(5), 469–479.CrossRef Rajkumar, M., Meenakshisundaram, N., & Rajendran, V. (2011). Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation. Materials Characterization,62(5), 469–479.CrossRef
16.
Zurück zum Zitat Usha, R., Jaimohan, S. M., Rajaram, A., & Mandal, A. B. (2010). Aggregation and self-assembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: An in vitro study. International Journal of Biological Macromolecules,47, 402–409.CrossRef Usha, R., Jaimohan, S. M., Rajaram, A., & Mandal, A. B. (2010). Aggregation and self-assembly of non-enzymatic glycation of collagen in the presence of amino guanidine and aspirin: An in vitro study. International Journal of Biological Macromolecules,47, 402–409.CrossRef
17.
Zurück zum Zitat Chauhan, S., Bansal, M., Khan, G., Yadav, S. K., Singh, A. K., Prakash, P., et al. (2018). Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis. Drug Development and Industrial Pharmacy,44(7), 1212–1221.CrossRef Chauhan, S., Bansal, M., Khan, G., Yadav, S. K., Singh, A. K., Prakash, P., et al. (2018). Development, optimization and evaluation of curcumin loaded biodegradable crosslinked gelatin film for the effective treatment of periodontitis. Drug Development and Industrial Pharmacy,44(7), 1212–1221.CrossRef
18.
Zurück zum Zitat Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products,70, 395–403.CrossRef Lin, S., Chen, L., Huang, L., Cao, S., Luo, X., & Liu, K. (2015). Novel antimicrobial chitosan–cellulose composite films bioconjugated with silver nanoparticles. Industrial Crops and Products,70, 395–403.CrossRef
19.
Zurück zum Zitat Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., et al. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CyTA-Journal of Food,16(1), 1045–1054.CrossRef Jiang, B., Li, S., Wu, Y., Song, J., Chen, S., Li, X., et al. (2018). Preparation and characterization of natural corn starch-based composite films reinforced by eggshell powder. CyTA-Journal of Food,16(1), 1045–1054.CrossRef
20.
Zurück zum Zitat Günther, H. (2013). NMR spectroscopy: Basic principles, concepts and applications in chemistry. Wiley. Günther, H. (2013). NMR spectroscopy: Basic principles, concepts and applications in chemistry. Wiley.
21.
Zurück zum Zitat Yin, M., Lin, X., Ren, T., Li, Z., Ren, X., & Huang, T. S. (2018). Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. International Journal of Biological Macromolecules,120, 992–998.CrossRef Yin, M., Lin, X., Ren, T., Li, Z., Ren, X., & Huang, T. S. (2018). Cytocompatible quaternized carboxymethyl chitosan/poly(vinyl alcohol) blend film loaded copper for antibacterial application. International Journal of Biological Macromolecules,120, 992–998.CrossRef
22.
Zurück zum Zitat Sun, Z., Li, M., Jin, Z., Gong, Y., An, Q., Tuo, X., et al. (2018). Starch-graft-polyacrylonitrile nanofibers by electrospinning. International Journal of Biological Macromolecules,120, 2552–2559.CrossRef Sun, Z., Li, M., Jin, Z., Gong, Y., An, Q., Tuo, X., et al. (2018). Starch-graft-polyacrylonitrile nanofibers by electrospinning. International Journal of Biological Macromolecules,120, 2552–2559.CrossRef
23.
Zurück zum Zitat Haroon, M., Yu, H., Wang, L., Ullah, R. S., Haq, F., & Teng, L. (2019). Synthesis and characterization of carboxymethyl starch-g-polyacrylic acids and their properties as adsorbents for ammonia and phenol. International Journal of Biological Macromolecules,138, 349–358.CrossRef Haroon, M., Yu, H., Wang, L., Ullah, R. S., Haq, F., & Teng, L. (2019). Synthesis and characterization of carboxymethyl starch-g-polyacrylic acids and their properties as adsorbents for ammonia and phenol. International Journal of Biological Macromolecules,138, 349–358.CrossRef
24.
Zurück zum Zitat Hao, Y., Chen, Y., Li, Q., & Gao, Q. (2019). Synthesis, characterization and hydrophobicity of esterified waxy potato starch nanocrystals. Industrial Crops & Products,130, 111–117.CrossRef Hao, Y., Chen, Y., Li, Q., & Gao, Q. (2019). Synthesis, characterization and hydrophobicity of esterified waxy potato starch nanocrystals. Industrial Crops & Products,130, 111–117.CrossRef
25.
Zurück zum Zitat Tan, W., Li, Q., Dong, F., Chen, Q., & Guo, Z. (2017). Preparation and characterization of novel cationic chitosan derivatives bearing quaternary ammonium and phosphonium salts and assessment of their antifungal properties. Molecules,22(9), 1438.CrossRef Tan, W., Li, Q., Dong, F., Chen, Q., & Guo, Z. (2017). Preparation and characterization of novel cationic chitosan derivatives bearing quaternary ammonium and phosphonium salts and assessment of their antifungal properties. Molecules,22(9), 1438.CrossRef
27.
Zurück zum Zitat Haugstad, G. (2012). Atomic force microscopy: Understanding basic modes and advanced applications. Wiley. Haugstad, G. (2012). Atomic force microscopy: Understanding basic modes and advanced applications. Wiley.
28.
Zurück zum Zitat Eaton, P., & West, P. (2010). Atomic force microscopy. Oxford university press. Eaton, P., & West, P. (2010). Atomic force microscopy. Oxford university press.
29.
Zurück zum Zitat Yu, H., & Rahim, N. A. A. (Eds.). (2013). Imaging in cellular and tissue engineering. CRC Press. Yu, H., & Rahim, N. A. A. (Eds.). (2013). Imaging in cellular and tissue engineering. CRC Press.
31.
Zurück zum Zitat Bonardd, S., Roble, E., Barandiaran, I., Saldías, C., Leiva, Á., & Kortaberria, G. (2018). Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydrate Polymers,199, 20–30.CrossRef Bonardd, S., Roble, E., Barandiaran, I., Saldías, C., Leiva, Á., & Kortaberria, G. (2018). Biocomposites with increased dielectric constant based on chitosan and nitrile-modified cellulose nanocrystals. Carbohydrate Polymers,199, 20–30.CrossRef
32.
Zurück zum Zitat Tang, R., Yu, Z., Renneckar, S., & Zhang, Y. (2018). Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction. Carbohydrate Polymers,202, 84–90.CrossRef Tang, R., Yu, Z., Renneckar, S., & Zhang, Y. (2018). Coupling chitosan and TEMPO-oxidized nanofibrilliated cellulose by electrostatic attraction and chemical reaction. Carbohydrate Polymers,202, 84–90.CrossRef
33.
Zurück zum Zitat Ni, P., Ba, H., Zhao, Ga, Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.CrossRef Ni, P., Ba, H., Zhao, Ga, Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.CrossRef
34.
Zurück zum Zitat Rhim, J. W. (2004). Physical and mechanical properties of water-resistant sodium alginate films. LWT-Food Science and Technology,37(3), 323–330.CrossRef Rhim, J. W. (2004). Physical and mechanical properties of water-resistant sodium alginate films. LWT-Food Science and Technology,37(3), 323–330.CrossRef
35.
Zurück zum Zitat Yang, L., Guo, J., Wu, J., Yang, Y., Zhang, S., Song, J., et al. (2017). Preparation and properties of a thin membrane based on sodium alginate grafting acrylonitrile. RSC Advances, 7(80), 50626–50633.CrossRef Yang, L., Guo, J., Wu, J., Yang, Y., Zhang, S., Song, J., et al. (2017). Preparation and properties of a thin membrane based on sodium alginate grafting acrylonitrile. RSC Advances7(80), 50626–50633.CrossRef
36.
Zurück zum Zitat Li, J., Chen, C., Wang, X., Gu, Z., & Chen, B. (2011). Novel strategy to fabricate PLA/Au nanocomposites as an efficient drug carrier for human leukemia cells in vitro. Nanoscale Research Letters,6(1), 29. Li, J., Chen, C., Wang, X., Gu, Z., & Chen, B. (2011). Novel strategy to fabricate PLA/Au nanocomposites as an efficient drug carrier for human leukemia cells in vitro. Nanoscale Research Letters,6(1), 29.
37.
Zurück zum Zitat Cernencu, A. I., Lungu, A., Dragusin, D., Serafim, A., Vasile, E., Ionescu, C., et al. (2017). Design of cellulose–alginate films using PEG/NaOH aqueous solution as co-solvent. Cellulose,24(10), 4419–4431.CrossRef Cernencu, A. I., Lungu, A., Dragusin, D., Serafim, A., Vasile, E., Ionescu, C., et al. (2017). Design of cellulose–alginate films using PEG/NaOH aqueous solution as co-solvent. Cellulose,24(10), 4419–4431.CrossRef
39.
Zurück zum Zitat Kumar, S., Krishnakumar, B., Sobral, A. J. F. N., & Koh, J. (2019). Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydrate Polymers,205, 559–564.CrossRef Kumar, S., Krishnakumar, B., Sobral, A. J. F. N., & Koh, J. (2019). Bio-based (chitosan/PVA/ZnO) nanocomposites film: Thermally stable and photoluminescence material for removal of organic dye. Carbohydrate Polymers,205, 559–564.CrossRef
40.
Zurück zum Zitat Upadhyaya, L., Singh, J., Agarwal, V., Pandey, A. C., Verma, S. P., Das, P., et al. (2014). In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. Journal of Polymer Research,21, 550.CrossRef Upadhyaya, L., Singh, J., Agarwal, V., Pandey, A. C., Verma, S. P., Das, P., et al. (2014). In situ grafted nanostructured ZnO/carboxymethyl cellulose nanocomposites for efficient delivery of curcumin to cancer. Journal of Polymer Research,21, 550.CrossRef
41.
Zurück zum Zitat Perotti, G. F., Tronto, J., Bizeto, M. A., Izumi, C. M. S., Temperini, M. L. A., Lugão, A. B., et al. (2014). Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. Journal of the Brazilian Chemical Society, 25, 320–330. Perotti, G. F., Tronto, J., Bizeto, M. A., Izumi, C. M. S., Temperini, M. L. A., Lugão, A. B., et al. (2014). Biopolymer-clay nanocomposites: Cassava starch and synthetic clay cast films. Journal of the Brazilian Chemical Society, 25, 320–330.
42.
Zurück zum Zitat Rath, D., Chahataray, R., & Nayak, P. L. (2013). Synthesis and characterization of conducting polymers multi walled carbon nanotube-Chitosan composites coupled with poly (metachloroaniline). Middle-East Journal of Scientific Research,18(5), 635–641. Rath, D., Chahataray, R., & Nayak, P. L. (2013). Synthesis and characterization of conducting polymers multi walled carbon nanotube-Chitosan composites coupled with poly (metachloroaniline). Middle-East Journal of Scientific Research,18(5), 635–641.
43.
Zurück zum Zitat Agel, M. R., Baghdan, E., Pinnapireddy, S. R., Lehmann, J., Schäfer, J., & Bakowsky, U. (2019). Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces,178, 460–468.CrossRef Agel, M. R., Baghdan, E., Pinnapireddy, S. R., Lehmann, J., Schäfer, J., & Bakowsky, U. (2019). Curcumin loaded nanoparticles as efficient photoactive formulations against gram-positive and gram-negative bacteria. Colloids and Surfaces B: Biointerfaces,178, 460–468.CrossRef
44.
Zurück zum Zitat Tiwari, N., Nawale, L., Sarkar, D., & Badiger, M. (2017). Carboxymethyl cellulose-grafted mesoporous silica hybrid nanogels for enhanced cellular uptake and release of curcumin. Gels,3(1), 8.CrossRef Tiwari, N., Nawale, L., Sarkar, D., & Badiger, M. (2017). Carboxymethyl cellulose-grafted mesoporous silica hybrid nanogels for enhanced cellular uptake and release of curcumin. Gels,3(1), 8.CrossRef
45.
Zurück zum Zitat Ni, P., Bi, H., Zhao, G., Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.CrossRef Ni, P., Bi, H., Zhao, G., Han, Y., Wickramaratne, M. N., Dai, H., et al. (2019). Electrospun preparation and biological properties in vitro of polyvinyl alcohol/sodium alginate/nano-hydroxyapatite composite fiber membrane. Colloids and Surfaces B: Biointerfaces,173, 171–177.CrossRef
46.
Zurück zum Zitat Fujimoto, J. G., & Farkas, D. (2009). Biomedical optical imaging. Oxford University Press. Fujimoto, J. G., & Farkas, D. (2009). Biomedical optical imaging. Oxford University Press.
47.
Zurück zum Zitat Herman, B., & Lemasters, J. J. (Eds.). (2012). Optical microscopy: Emerging methods and applications. Elsevier. Herman, B., & Lemasters, J. J. (Eds.). (2012). Optical microscopy: Emerging methods and applications. Elsevier.
48.
Zurück zum Zitat Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing. Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing.
49.
Zurück zum Zitat Ali, A., Yu, L., Liu, H., Khalid, S., Meng, L., & Chen, L. (2017). Preparation and characterization of starch-based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science,134(32), 45159.CrossRef Ali, A., Yu, L., Liu, H., Khalid, S., Meng, L., & Chen, L. (2017). Preparation and characterization of starch-based composite films reinforced by corn and wheat hulls. Journal of Applied Polymer Science,134(32), 45159.CrossRef
50.
Zurück zum Zitat Ashok, A., Reddy, K. O., Tian, F. H., & Rajulu, A. V. (2019). Preparation and properties of cellulose/Thespesia lampas microfiber composite films. International Journal of Biological Macromolecules,127, 153–158.CrossRef Ashok, A., Reddy, K. O., Tian, F. H., & Rajulu, A. V. (2019). Preparation and properties of cellulose/Thespesia lampas microfiber composite films. International Journal of Biological Macromolecules,127, 153–158.CrossRef
51.
Zurück zum Zitat Venkatesana, J., Ryu, B., Sudha, P. N., & Kim, S. (2012). Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering. International Journal of Biological Macromolecules,50, 393–402.CrossRef Venkatesana, J., Ryu, B., Sudha, P. N., & Kim, S. (2012). Preparation and characterization of chitosan–carbon nanotube scaffolds for bone tissue engineering. International Journal of Biological Macromolecules,50, 393–402.CrossRef
52.
Zurück zum Zitat Qiu, T. Y., Song, M., & Zhao, L. G. (2016). Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes,2(1), 7.CrossRef Qiu, T. Y., Song, M., & Zhao, L. G. (2016). Testing, characterization and modelling of mechanical behaviour of poly (lactic-acid) and poly (butylene succinate) blends. Mechanics of Advanced Materials and Modern Processes,2(1), 7.CrossRef
53.
Zurück zum Zitat Xu, A., Xu, J., Xiao, L., Li, Z., Xiao, Y., Dargusch, M., et al. (2018). Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances,8, 16503–16512.CrossRef Xu, A., Xu, J., Xiao, L., Li, Z., Xiao, Y., Dargusch, M., et al. (2018). Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Advances,8, 16503–16512.CrossRef
54.
Zurück zum Zitat Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing. 10.1016/b978-0-08-100552-1.00008-7. Di Gianfrancesco, A. (2017). Technologies for chemical analyses, microstructural and inspection investigations. In Materials for ultra-supercritical and advanced ultra-supercritical power plants (pp. 197–245). Woodhead Publishing. 10.1016/b978-0-08-100552-1.00008-7.
55.
Zurück zum Zitat Yang, Z., Yu, W., Xu, D., Guo, L., Wu, F., & Xu, X. (2019). Impact of frozen storage on whole wheat starch and its A-Type and B-Type granules isolated from frozen dough. Carbohydrate polymers,223, 115142.CrossRef Yang, Z., Yu, W., Xu, D., Guo, L., Wu, F., & Xu, X. (2019). Impact of frozen storage on whole wheat starch and its A-Type and B-Type granules isolated from frozen dough. Carbohydrate polymers,223, 115142.CrossRef
56.
Zurück zum Zitat Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–Alginate hybrid scaffolds for bone tissue engineering. Biomaterials,26(18), 3919–3928.CrossRef Li, Z., Ramay, H. R., Hauch, K. D., Xiao, D., & Zhang, M. (2005). Chitosan–Alginate hybrid scaffolds for bone tissue engineering. Biomaterials,26(18), 3919–3928.CrossRef
57.
Zurück zum Zitat Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids,31(2), 413–419.CrossRef Sujka, M., & Jamroz, J. (2013). Ultrasound-treated starch: SEM and TEM imaging, and functional behaviour. Food Hydrocolloids,31(2), 413–419.CrossRef
58.
Zurück zum Zitat Moshaverinia, A., Chen, C., Akiyama, K., Ansari, S., Xu, X., Chee, W. W., Schricker, S. R., & Shi, S. (2012). Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. Journal of Materials Science: Materials in Medicine,23(12), 3041–3051. Moshaverinia, A., Chen, C., Akiyama, K., Ansari, S., Xu, X., Chee, W. W., Schricker, S. R., & Shi, S. (2012). Alginate hydrogel as a promising scaffold for dental-derived stem cells: An in vitro study. Journal of Materials Science: Materials in Medicine,23(12), 3041–3051.
59.
Zurück zum Zitat Liu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules,111, 717–721.CrossRef Liu, Y., Liu, A., Ibrahim, S. A., Yang, H., & Huang, W. (2018). Isolation and characterization of microcrystalline cellulose from pomelo peel. International Journal of Biological Macromolecules,111, 717–721.CrossRef
60.
Zurück zum Zitat Wasserman, L. A., Papakhin, A. A., Borodina, Z. M., Krivandin, A. V., Sergeev, A. I., & Tarasov, V. F. (2019). Some physico-chemical and thermodynamic characteristics of maize starches hydrolyzed by glucoamylase. Carbohydrate Polymers,212, 260–269.CrossRef Wasserman, L. A., Papakhin, A. A., Borodina, Z. M., Krivandin, A. V., Sergeev, A. I., & Tarasov, V. F. (2019). Some physico-chemical and thermodynamic characteristics of maize starches hydrolyzed by glucoamylase. Carbohydrate Polymers,212, 260–269.CrossRef
61.
Zurück zum Zitat Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry. Wiley. 10.1002/047010631x Griffiths, P. R., & De Haseth, J. A. (2007). Fourier transform infrared spectrometry. Wiley. 10.1002/047010631x
64.
Zurück zum Zitat Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., et al. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.CrossRef Mendes, J. F., Paschoalin, R. T., Carmona, V. B., Sena Neto, A. R., Marques, A. C. P., Marconcini, J. M., et al. (2016). Biodegradable polymer blends based on corn starch and thermoplastic chitosan processed by extrusion. Carbohydrate Polymers, 137, 452–458.CrossRef
66.
Zurück zum Zitat Behera, S. S., Das, U., Kumar, A., Bissoyi, A., & Singh, A. K. (2017). Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340.CrossRef Behera, S. S., Das, U., Kumar, A., Bissoyi, A., & Singh, A. K. (2017). Chitosan/TiO2 composite membrane improves proliferation and survival of L929 fibroblast cells: Application in wound dressing and skin regeneration. International Journal of Biological Macromolecules, 98, 329–340.CrossRef
Metadaten
Titel
Structure and Surface Morphology Techniques for Biopolymers
verfasst von
Sabarish Radoor
Jasila Karayil
Aswathy Jayakumar
E. K. Radhakrishnan
Lakshmanan Muthulakshmi
Sanjay Mavinkere Rangappa
Suchart Siengchin
Jyotishkumar Parameswaranpillai
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-40301-0_2

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.