Skip to main content
Erschienen in: Metal Science and Heat Treatment 1-2/2014

01.05.2014 | Welded joints

Structure of a Welded Joint of Directedly Crystallized Metal Based on Ni3Al

verfasst von: I. V. Zorin, G. N. Sokolov, Yu. N. Dubtsov, V. I. Lysak, A. V. Samokhin, N. V. Alekseev, Yu. V. Tsvetkov

Erschienen in: Metal Science and Heat Treatment | Ausgabe 1-2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The structure of a welded joint obtained by argon-arc welding with the use of a composite electrode wire of a Ni3Al-base alloy after directed crystallization is studied. It is shown that the use of composite electrode wire containing nanoparticles of tungsten carbide for argon-arc welding promotes formation of a quality weld metal and a defect-free transition zone between the latter and the directedly crystallized alloy based on Ni3Al.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
RF Patent for Invention No. 2478029.
 
2
The tungsten carbide was obtained by thermochemical treatment of a nanosizeW – C composition at the laboratory for plasma processes in metallurgy and treatment of materials of the IMET.
 
3
The authors are thankful to engineer S. V. Skorodumov of the “International School of Microscopy” Training Scientific Center and to operator N. A. Sokolov of the Department of Nanotechnology of the Keldysh Research Center for cooperation in the electron microscopic studies.
 
Literatur
1.
Zurück zum Zitat L. A. Magerramova, T. P. Zakharova, M. V. Gromov, and V. N. Samarov, “Turbines with “blisk” and without,” Dvigatel’, No. 2, 32 – 34 (1999). L. A. Magerramova, T. P. Zakharova, M. V. Gromov, and V. N. Samarov, “Turbines with “blisk” and without,” Dvigatel’, No. 2, 32 – 34 (1999).
2.
Zurück zum Zitat P. A. Molian, Y. M. Yang, and T. S. Srivatsan, “Laser-welding behavior of cast Ni3Al intermetallic alloy,” J. Mater. Sci., 27, 1857 – 1868 (1992).CrossRef P. A. Molian, Y. M. Yang, and T. S. Srivatsan, “Laser-welding behavior of cast Ni3Al intermetallic alloy,” J. Mater. Sci., 27, 1857 – 1868 (1992).CrossRef
3.
Zurück zum Zitat R. G. Ding, O. A. Ojo, and M. C. Chaturvedi, “Laser beam weld metal microstructure in a yttrium modified directionally solidified Ni3Al-base alloy,” Intermetallics, 15, 1504 – 1510 (2007).CrossRef R. G. Ding, O. A. Ojo, and M. C. Chaturvedi, “Laser beam weld metal microstructure in a yttrium modified directionally solidified Ni3Al-base alloy,” Intermetallics, 15, 1504 – 1510 (2007).CrossRef
4.
Zurück zum Zitat A. A. Schnell, M. Heobel, and J. Samuleson, “Study of the weldability of gamma prime hardened superalloys,” Adv. Mater. Res., 278, 434 – 439 (2011).CrossRef A. A. Schnell, M. Heobel, and J. Samuleson, “Study of the weldability of gamma prime hardened superalloys,” Adv. Mater. Res., 278, 434 – 439 (2011).CrossRef
5.
Zurück zum Zitat T. D. Anderson and J. N. Dupont, “Stray grain formation and solidification cracking susceptibility of single crystal Ni-based superalloy CMSX-4,” Welding J., 90, 27 – 31 (2011). T. D. Anderson and J. N. Dupont, “Stray grain formation and solidification cracking susceptibility of single crystal Ni-based superalloy CMSX-4,” Welding J., 90, 27 – 31 (2011).
6.
Zurück zum Zitat K. A. Yushchenko, B. A. Zaderii, V. S. Savchenko, et al., “Welding and facing of refractory nickel alloys with singlecrystal structure,” Avtomat. Svarka, No. 11, 217 – 222 (2008). K. A. Yushchenko, B. A. Zaderii, V. S. Savchenko, et al., “Welding and facing of refractory nickel alloys with singlecrystal structure,” Avtomat. Svarka, No. 11, 217 – 222 (2008).
7.
Zurück zum Zitat M. B. Henderson, D. Arrell, M. Heobel, et al., “Nickel-based superalloy welding practices for industrial gas turbine applications, Sci. Technol. Welding Join., 9(1), 13 – 21 (2004).CrossRef M. B. Henderson, D. Arrell, M. Heobel, et al., “Nickel-based superalloy welding practices for industrial gas turbine applications, Sci. Technol. Welding Join., 9(1), 13 – 21 (2004).CrossRef
8.
Zurück zum Zitat A. B. Malyi, Yu. V. Butenko, and V. F. Khorunov, “Weldability of high-alloy heat-hardened nickel-based alloys,” Avtomat. Svarka, No. 5, 24 – 27 (2005). A. B. Malyi, Yu. V. Butenko, and V. F. Khorunov, “Weldability of high-alloy heat-hardened nickel-based alloys,” Avtomat. Svarka, No. 5, 24 – 27 (2005).
9.
Zurück zum Zitat John C. Lippold, Samuel D. Kiser, and John N. Dupont,Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons Inc., New Jersey (2009), 440 p. John C. Lippold, Samuel D. Kiser, and John N. Dupont,Welding Metallurgy and Weldability of Nickel-Base Alloys, John Wiley & Sons Inc., New Jersey (2009), 440 p.
10.
Zurück zum Zitat R. C. Reed, The Superalloys: Fundamentals and Application, Cambridge University Press, Cambridge (2008), 388 p. R. C. Reed, The Superalloys: Fundamentals and Application, Cambridge University Press, Cambridge (2008), 388 p.
11.
Zurück zum Zitat K. B. Povarova, O. A. Bazyleva, A. A. Drozdov, et al., “Ni3Al-base structural refractory alloys: fabrication, structure and properties,” Materialovedenie, No. 4, 39 – 48 (2011). K. B. Povarova, O. A. Bazyleva, A. A. Drozdov, et al., “Ni3Al-base structural refractory alloys: fabrication, structure and properties,” Materialovedenie, No. 4, 39 – 48 (2011).
12.
Zurück zum Zitat G. N. Sokolov, A. A. Artem’ev, I. V. Zorin, et al., “Diagnostics of the wear resistance of faced metal by the method of hardness metering,” Svarka Diagn., No. 2, 34 – 39 (2012). G. N. Sokolov, A. A. Artem’ev, I. V. Zorin, et al., “Diagnostics of the wear resistance of faced metal by the method of hardness metering,” Svarka Diagn., No. 2, 34 – 39 (2012).
13.
Zurück zum Zitat Yu. V. Blagoveshchenskii, N. V. Alekseev, A. V. Samokhin, Yu. I. Mel’nik, Yu. V. Tsvetkov, and S. A. Kornev, A Method for Fabricating Powders Based on Tungsten Carbide, RF Patent 2349424, MKI B 22 F9/22, C 01 B 31/34 [in Russian], IMET Im. A. A. Baikova RAN, Appl. 18.10.2007, Publ. 20.03.2009. Yu. V. Blagoveshchenskii, N. V. Alekseev, A. V. Samokhin, Yu. I. Mel’nik, Yu. V. Tsvetkov, and S. A. Kornev, A Method for Fabricating Powders Based on Tungsten Carbide, RF Patent 2349424, MKI B 22 F9/22, C 01 B 31/34 [in Russian], IMET Im. A. A. Baikova RAN, Appl. 18.10.2007, Publ. 20.03.2009.
14.
Zurück zum Zitat A. V. Samokhin, N. V. Alekseev, and Yu. V. Tsvetkov, “Plasmochemical processes of creation of nanosize powder materials,” Khim. Vysokikh Energ., 40(2), 120 – 126 (2006). A. V. Samokhin, N. V. Alekseev, and Yu. V. Tsvetkov, “Plasmochemical processes of creation of nanosize powder materials,” Khim. Vysokikh Energ., 40(2), 120 – 126 (2006).
15.
Zurück zum Zitat N. V. Petrushin, E. B. Chabina, and R. M. Nazarkin, “Design of refractory intermetallic alloys on the base of γ′-phase with high melting temperature. Part 1,” Metalloved. Term. Obrab. Met., No. 2, 32 – 38 (2012). N. V. Petrushin, E. B. Chabina, and R. M. Nazarkin, “Design of refractory intermetallic alloys on the base of γ′-phase with high melting temperature. Part 1,” Metalloved. Term. Obrab. Met., No. 2, 32 – 38 (2012).
16.
Zurück zum Zitat C. T. Sims, N. S. Stoloff, andW. K. Hagel (eds.), Superalloys II. Refractory Materials for Aerospace and Industrial Power Plants [Russian translation], Metallurgiya, Moscow (1995), 384 p. C. T. Sims, N. S. Stoloff, andW. K. Hagel (eds.), Superalloys II. Refractory Materials for Aerospace and Industrial Power Plants [Russian translation], Metallurgiya, Moscow (1995), 384 p.
17.
Zurück zum Zitat V. F. Boiko and A. D. Verkhoturov, “Evaluation of the surface energy of tungsten carbide after its joint milling with iron powder in a planetary ball mill,” Perspekt. Mater., No. 2, 103 – 106 (2010). V. F. Boiko and A. D. Verkhoturov, “Evaluation of the surface energy of tungsten carbide after its joint milling with iron powder in a planetary ball mill,” Perspekt. Mater., No. 2, 103 – 106 (2010).
18.
Zurück zum Zitat T. N. Vershinina, O. A. Golosova, Yu. R. Kolobov, and K. B. Povarova, “A study of structural and phase states of deformed Ni3Al intermetallic after annealing and high-temperature creep,” Metally, No. 3, 60 – 64 (2011). T. N. Vershinina, O. A. Golosova, Yu. R. Kolobov, and K. B. Povarova, “A study of structural and phase states of deformed Ni3Al intermetallic after annealing and high-temperature creep,” Metally, No. 3, 60 – 64 (2011).
Metadaten
Titel
Structure of a Welded Joint of Directedly Crystallized Metal Based on Ni3Al
verfasst von
I. V. Zorin
G. N. Sokolov
Yu. N. Dubtsov
V. I. Lysak
A. V. Samokhin
N. V. Alekseev
Yu. V. Tsvetkov
Publikationsdatum
01.05.2014
Verlag
Springer US
Erschienen in
Metal Science and Heat Treatment / Ausgabe 1-2/2014
Print ISSN: 0026-0673
Elektronische ISSN: 1573-8973
DOI
https://doi.org/10.1007/s11041-014-9711-3

Weitere Artikel der Ausgabe 1-2/2014

Metal Science and Heat Treatment 1-2/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.