Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2021

15.06.2021

Study of performance and stability of hole transport layer-free perovskite solar cells with modified electron transport layer

verfasst von: Hamed Pourfarzad, Mohammad Saremi, Ramin Badrnezhad

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The electron transport layer (ETL) performs a functional role in the structure of perovskite solar cells (PSCs). Here in this study, various additives were used to improve the electron transport layer and the performance of PSCs. Recently, carbon nanostructures have shown the capability to be a good candidate to improve the performance of perovskite solar cells. In this study, carbon nanostructures of reduced graphene oxide (RGO), carbon quantum dots (CQDs), and a combination of these, were used in the mesoporous TiO2 precursor solution (mTiO2) to increase the performance and stability of hole-transport-free PSCs. The use of these materials due to their unique properties in the electron transfer layer has facilitated, increased electron transfer, and improved the surface of the perovskite layer. These factors have increased the efficiency and performance of PSCs. Using these materials, the power conversion efficiency (PCE) of PSCs was increased from 5.88% without additives to 10.92% with additives and improved the stability than the pristine sample. The best-optimized PCE and stability are related to adding a combination of CQDs and RGO with a ratio of 50:50 into the electron transport layer, the device structure is Fluorine-doped tin oxide (FTO)/cTiO2/ CQDs+RGO+mTiO2/methylammonium lead iodide (MAPbI3)Au.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F. Targhi et al., MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Results Phys. 10, 616–627 (2018)CrossRef F. Targhi et al., MAPbI3 and FAPbI3 perovskites as solar cells: case study on structural, electrical and optical properties. Results Phys. 10, 616–627 (2018)CrossRef
2.
Zurück zum Zitat K. Donghee et al., Origin of temperature-dependent performance of hole-transport-layer-free perovskite solar cells doped with CuSCN. Org. Electron. 87, 105958–105968 (2020)CrossRef K. Donghee et al., Origin of temperature-dependent performance of hole-transport-layer-free perovskite solar cells doped with CuSCN. Org. Electron. 87, 105958–105968 (2020)CrossRef
3.
Zurück zum Zitat Al. Mousoi et al., Engineered surface properties of MAPI using different antisolvents for hole transport layer-free perovskite solar cell (HTL-free PSC). J. Sol-Gel Sci. Technol. 96, 659–668 (2020)CrossRef Al. Mousoi et al., Engineered surface properties of MAPI using different antisolvents for hole transport layer-free perovskite solar cell (HTL-free PSC). J. Sol-Gel Sci. Technol. 96, 659–668 (2020)CrossRef
4.
Zurück zum Zitat G. Xing et al., Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRef G. Xing et al., Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013)CrossRef
5.
Zurück zum Zitat J. Kim, A. Ho-Baillie, S. Huang, Review of novel passivation techniques for efficient and stable perovskite solar cells. Solar RRL 3, 1800302 (2019)CrossRef J. Kim, A. Ho-Baillie, S. Huang, Review of novel passivation techniques for efficient and stable perovskite solar cells. Solar RRL 3, 1800302 (2019)CrossRef
6.
Zurück zum Zitat R. Wang et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019)CrossRef R. Wang et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29, 1808843 (2019)CrossRef
7.
Zurück zum Zitat M.M. Lee et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)CrossRef M.M. Lee et al., Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)CrossRef
8.
Zurück zum Zitat D. Xin et al., Defect passivation through electrostatic interaction for high performance flexible perovskite solar cells. J. Energy Chem. 46, 173–177 (2020)CrossRef D. Xin et al., Defect passivation through electrostatic interaction for high performance flexible perovskite solar cells. J. Energy Chem. 46, 173–177 (2020)CrossRef
9.
Zurück zum Zitat N.R.E. Laboratory, Best Research-Cell Efficiency Chart (NREL Golden, CO, 2019) N.R.E. Laboratory, Best Research-Cell Efficiency Chart (NREL Golden, CO, 2019)
10.
Zurück zum Zitat M.V. Khenkin et al., Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy Environ. Sci. 12, 550–558 (2019)CrossRef M.V. Khenkin et al., Bias-dependent degradation of various solar cells: lessons for stability of perovskite photovoltaics. Energy Environ. Sci. 12, 550–558 (2019)CrossRef
11.
Zurück zum Zitat T. Li et al., Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. J. Mater. Chem. A 5, 12602–12652 (2017)CrossRef T. Li et al., Additive engineering for highly efficient organic–inorganic halide perovskite solar cells: recent advances and perspectives. J. Mater. Chem. A 5, 12602–12652 (2017)CrossRef
12.
Zurück zum Zitat W.-J. Yin et al., Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015)CrossRef W.-J. Yin et al., Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015)CrossRef
13.
Zurück zum Zitat D.W. DeQuilettes et al., Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 1–9 (2016)CrossRef D.W. DeQuilettes et al., Photo-induced halide redistribution in organic–inorganic perovskite films. Nat. Commun. 7, 1–9 (2016)CrossRef
14.
Zurück zum Zitat R. Zhang et al., Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells. J. Mater. Sci. 53, 4507–4514 (2018)CrossRef R. Zhang et al., Synergistic carbon-based hole transporting layers for efficient and stable perovskite solar cells. J. Mater. Sci. 53, 4507–4514 (2018)CrossRef
15.
Zurück zum Zitat X. Zhao et al., Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 18, 2442–2449 (2018)CrossRef X. Zhao et al., Efficient planar perovskite solar cells with improved fill factor via interface engineering with graphene. Nano Lett. 18, 2442–2449 (2018)CrossRef
16.
Zurück zum Zitat S. Seo et al., Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. J. Mater. Chem. A 7, 12987–12992 (2019)CrossRef S. Seo et al., Semiconducting carbon nanotubes as crystal growth templates and grain bridges in perovskite solar cells. J. Mater. Chem. A 7, 12987–12992 (2019)CrossRef
17.
Zurück zum Zitat D. Benetti et al., Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material. Nano Energy 62, 781–790 (2019)CrossRef D. Benetti et al., Hole-extraction and photostability enhancement in highly efficient inverted perovskite solar cells through carbon dot-based hybrid material. Nano Energy 62, 781–790 (2019)CrossRef
18.
Zurück zum Zitat X. Li et al., Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015)CrossRef X. Li et al., Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015)CrossRef
19.
Zurück zum Zitat K.J. Mintz, Y. Zhou, R.M. Leblanc, Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11, 4634–4652 (2019)CrossRef K.J. Mintz, Y. Zhou, R.M. Leblanc, Recent development of carbon quantum dots regarding their optical properties, photoluminescence mechanism, and core structure. Nanoscale 11, 4634–4652 (2019)CrossRef
20.
Zurück zum Zitat F. Biccari et al., Graphene-based electron transport layers in perovskite solar cells: a step-up for an efficient carrier collection. Adv. Energy Mater. 7, 1701349 (2017)CrossRef F. Biccari et al., Graphene-based electron transport layers in perovskite solar cells: a step-up for an efficient carrier collection. Adv. Energy Mater. 7, 1701349 (2017)CrossRef
21.
Zurück zum Zitat Y. Ma et al., Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Interfaces 11, 3044–3052 (2018)CrossRef Y. Ma et al., Enhancing the performance of inverted perovskite solar cells via grain boundary passivation with carbon quantum dots. ACS Appl. Mater. Interfaces 11, 3044–3052 (2018)CrossRef
23.
Zurück zum Zitat H. Zheng et al., Promoting perovskite crystal growth to achieve highly efficient and stable solar cells by introducing acetamide as an additive. J. Mater. Chem. A 6, 9930–9937 (2018)CrossRef H. Zheng et al., Promoting perovskite crystal growth to achieve highly efficient and stable solar cells by introducing acetamide as an additive. J. Mater. Chem. A 6, 9930–9937 (2018)CrossRef
24.
Zurück zum Zitat H. Zheng et al., The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 7, 4441–4448 (2019)CrossRef H. Zheng et al., The multiple effects of polyaniline additive to improve the efficiency and stability of perovskite solar cells. J. Mater. Chem. C 7, 4441–4448 (2019)CrossRef
25.
Zurück zum Zitat A. Pang et al., Highly efficient perovskite solar cells based on Zn2Ti3O8 nanoparticles as electron transport material. Chemsuschem 11, 424–431 (2018)CrossRef A. Pang et al., Highly efficient perovskite solar cells based on Zn2Ti3O8 nanoparticles as electron transport material. Chemsuschem 11, 424–431 (2018)CrossRef
26.
Zurück zum Zitat H.-B. Chen et al., Incorporating c60 as nucleation sites optimizing pbi2 films to achieve perovskite solar cells showing excellent efficiency and stability via vapor-assisted deposition method. ACS Appl. Mater. Interfaces 10, 2603–2611 (2018)CrossRef H.-B. Chen et al., Incorporating c60 as nucleation sites optimizing pbi2 films to achieve perovskite solar cells showing excellent efficiency and stability via vapor-assisted deposition method. ACS Appl. Mater. Interfaces 10, 2603–2611 (2018)CrossRef
27.
Zurück zum Zitat R. Chen et al., Zinc ion as effective film morphology controller in perovskite solar cells. Sustain. Energy Fuels 2, 1093–1100 (2018)CrossRef R. Chen et al., Zinc ion as effective film morphology controller in perovskite solar cells. Sustain. Energy Fuels 2, 1093–1100 (2018)CrossRef
28.
Zurück zum Zitat P. Chandrasekhar, A. Dubey, Q. Qiao, High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol. Energy 197, 78–83 (2020)CrossRef P. Chandrasekhar, A. Dubey, Q. Qiao, High efficiency perovskite solar cells using nitrogen-doped graphene/ZnO nanorod composite as an electron transport layer. Sol. Energy 197, 78–83 (2020)CrossRef
29.
Zurück zum Zitat D. Wang et al., Influence of polymer additives on the efficiency and stability of ambient-air solution-processed planar perovskite solar cells. Energy Technol. 6, 2380–2386 (2018)CrossRef D. Wang et al., Influence of polymer additives on the efficiency and stability of ambient-air solution-processed planar perovskite solar cells. Energy Technol. 6, 2380–2386 (2018)CrossRef
30.
Zurück zum Zitat E. Nouri, M.R. Mohammadi, P. Lianos, Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochim. Acta 219, 38–48 (2016)CrossRef E. Nouri, M.R. Mohammadi, P. Lianos, Impact of preparation method of TiO2-RGO nanocomposite photoanodes on the performance of dye-sensitized solar cells. Electrochim. Acta 219, 38–48 (2016)CrossRef
Metadaten
Titel
Study of performance and stability of hole transport layer-free perovskite solar cells with modified electron transport layer
verfasst von
Hamed Pourfarzad
Mohammad Saremi
Ramin Badrnezhad
Publikationsdatum
15.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06293-8

Weitere Artikel der Ausgabe 13/2021

Journal of Materials Science: Materials in Electronics 13/2021 Zur Ausgabe