Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2019

16.05.2019

Study of Static Recrystallization Behavior of a Mg-6Al-3Sn Alloy

verfasst von: Gaurav Gaurav, R. Sarvesha, Sudhanshu S. Singh, Rajesh Prasad, Jayant Jain

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, the static recrystallization behavior of cold-rolled Mg-6Al-3Sn alloy has been studied during annealing in the temperature range of 200-400 °C. The role of Mg17Al12 precipitation during recrystallization is discerned. A significant drop in the grain size has been reported post-recrystallization. The results suggest that the recrystallization predominately started at the prior grain boundaries and within the twin boundaries. Recrystallization at lower temperatures was found to be incomplete despite holding for a longer duration. However, at higher temperatures, the recrystallization was observed to be complete in shorter times. The role of concurrent precipitation during recrystallization has been ascertained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat E. Aghion and B. Bronfin. Magnesium Alloys Development Towards the 21st Century, in Materials Science Forum, Trans Tech Publ., 2000 E. Aghion and B. Bronfin. Magnesium Alloys Development Towards the 21st Century, in Materials Science Forum, Trans Tech Publ., 2000
2.
Zurück zum Zitat H. Zhang et al., Improved Mechanical Properties of AZ31 Magnesium Alloy Sheets by Repeated Cold Rolling and Annealing Using a Small Pass Reduction, Mater. Sci. Eng. A, 2015, 637, p 243–250CrossRef H. Zhang et al., Improved Mechanical Properties of AZ31 Magnesium Alloy Sheets by Repeated Cold Rolling and Annealing Using a Small Pass Reduction, Mater. Sci. Eng. A, 2015, 637, p 243–250CrossRef
3.
Zurück zum Zitat H. Chao et al., Static Recrystallization Kinetics of a Heavily Cold Drawn AZ31 Magnesium Alloy Under Annealing Treatment, Mater. Charact., 2011, 62(3), p 312–320CrossRef H. Chao et al., Static Recrystallization Kinetics of a Heavily Cold Drawn AZ31 Magnesium Alloy Under Annealing Treatment, Mater. Charact., 2011, 62(3), p 312–320CrossRef
4.
Zurück zum Zitat S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRef S. Biswas, S.S. Dhinwal, and S. Suwas, Room-Temperature Equal Channel Angular Extrusion of Pure Magnesium, Acta Mater., 2010, 58(9), p 3247–3261CrossRef
5.
Zurück zum Zitat S.A. Torbati-Sarraf and T.G. Langdon, Properties of a ZK60 Magnesium Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2014, 613, p 357–363CrossRef S.A. Torbati-Sarraf and T.G. Langdon, Properties of a ZK60 Magnesium Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2014, 613, p 357–363CrossRef
6.
Zurück zum Zitat H.-Y. Wang et al., Achieving a Weak Basal Texture in a Mg-6Al-3Sn Alloy by Wave-Shaped Die Rolling, Mater. Des., 2015, 88, p 157–161CrossRef H.-Y. Wang et al., Achieving a Weak Basal Texture in a Mg-6Al-3Sn Alloy by Wave-Shaped Die Rolling, Mater. Des., 2015, 88, p 157–161CrossRef
7.
Zurück zum Zitat W. Woo, Severe Plastic Deformation Using Friction Stir Processing, and the Characterization of Microstructure and Mechanical Behavior Using Neutron Diffraction, Ph.D. thesis, University of Tennessee, Knoxville, 2006 W. Woo, Severe Plastic Deformation Using Friction Stir Processing, and the Characterization of Microstructure and Mechanical Behavior Using Neutron Diffraction, Ph.D. thesis, University of Tennessee, Knoxville, 2006
8.
Zurück zum Zitat S. Xu et al., Recrystallization Mechanism of As-Cast AZ91 Magnesium Alloy During Hot Compressive Deformation, Mater. Sci. Eng. A, 2009, 527(1), p 52–60CrossRef S. Xu et al., Recrystallization Mechanism of As-Cast AZ91 Magnesium Alloy During Hot Compressive Deformation, Mater. Sci. Eng. A, 2009, 527(1), p 52–60CrossRef
9.
Zurück zum Zitat Q. Ma et al., Twinning-Induced Dynamic Recrystallization in a Magnesium Alloy Extruded at 450 °C, Scr. Mater., 2011, 65(9), p 823–826CrossRef Q. Ma et al., Twinning-Induced Dynamic Recrystallization in a Magnesium Alloy Extruded at 450 °C, Scr. Mater., 2011, 65(9), p 823–826CrossRef
10.
Zurück zum Zitat A.S.H. Kabir et al., Effect of Strain-Induced Precipitation on Dynamic Recrystallization in Mg-Al-Sn Alloys, Mater. Sci. Eng. A, 2014, 616, p 252–259CrossRef A.S.H. Kabir et al., Effect of Strain-Induced Precipitation on Dynamic Recrystallization in Mg-Al-Sn Alloys, Mater. Sci. Eng. A, 2014, 616, p 252–259CrossRef
11.
Zurück zum Zitat X. Li et al., Influence of Second-Phase Precipitates on the Texture Evolution of Mg-Al-Zn Alloys During Hot Deformation, Scr. Mater., 2012, 66(3), p 159–162CrossRef X. Li et al., Influence of Second-Phase Precipitates on the Texture Evolution of Mg-Al-Zn Alloys During Hot Deformation, Scr. Mater., 2012, 66(3), p 159–162CrossRef
12.
Zurück zum Zitat P. Changizian, A. Zarei-Hanzaki, and H. Abedi, On the Recrystallization Behavior of Homogenized AZ81 Magnesium Alloy: The Effect of Mechanical Twins and γ Precipitates, Mater. Sci. Eng. A, 2012, 558, p 44–51CrossRef P. Changizian, A. Zarei-Hanzaki, and H. Abedi, On the Recrystallization Behavior of Homogenized AZ81 Magnesium Alloy: The Effect of Mechanical Twins and γ Precipitates, Mater. Sci. Eng. A, 2012, 558, p 44–51CrossRef
13.
Zurück zum Zitat M. Qing et al., Grain Refining and Property Improvement of AZ31 Mg Alloy by Hot Rolling, Trans. Nonferr. Met. Soc. China, 2009, 19, p s326–s330CrossRef M. Qing et al., Grain Refining and Property Improvement of AZ31 Mg Alloy by Hot Rolling, Trans. Nonferr. Met. Soc. China, 2009, 19, p s326–s330CrossRef
14.
Zurück zum Zitat Y. Wang, Y. Xin, and Q. Liu, Annealing Induced Concentration of Basal Poles Toward the Normal Direction of a Hot Rolled Mg-5.7 Zn Plate, J. Alloys Compd., 2016, 666, p 341–345CrossRef Y. Wang, Y. Xin, and Q. Liu, Annealing Induced Concentration of Basal Poles Toward the Normal Direction of a Hot Rolled Mg-5.7 Zn Plate, J. Alloys Compd., 2016, 666, p 341–345CrossRef
15.
Zurück zum Zitat J. Jain, W. Poole, and C. Sinclair, A Study on the Static Recrystallization of Cold Rolled Magnesium Alloy AZ 80, Magnes. Technol., 2006, 2006, p 147–152 J. Jain, W. Poole, and C. Sinclair, A Study on the Static Recrystallization of Cold Rolled Magnesium Alloy AZ 80, Magnes. Technol., 2006, 2006, p 147–152
16.
Zurück zum Zitat H.-F. Sun, H.-Y. Chao, and E.-D. Wang, Microstructure Stability of Cold Drawn AZ31 Magnesium Alloy During Annealing Process, Trans. Nonferr. Met. Soc. China, 2011, 21, p s215–s221CrossRef H.-F. Sun, H.-Y. Chao, and E.-D. Wang, Microstructure Stability of Cold Drawn AZ31 Magnesium Alloy During Annealing Process, Trans. Nonferr. Met. Soc. China, 2011, 21, p s215–s221CrossRef
17.
Zurück zum Zitat Z.R. Zeng et al., Texture Evolution During Static Recrystallization of Cold-Rolled Magnesium Alloys, Acta Mater., 2016, 105, p 479–494CrossRef Z.R. Zeng et al., Texture Evolution During Static Recrystallization of Cold-Rolled Magnesium Alloys, Acta Mater., 2016, 105, p 479–494CrossRef
18.
Zurück zum Zitat L. Lu et al., Effect of Annealing on Microstructure Evolution and Mechanical Property of Cold Forged Magnesium Pipes, Mater. Des., 2012, 39, p 131–139CrossRef L. Lu et al., Effect of Annealing on Microstructure Evolution and Mechanical Property of Cold Forged Magnesium Pipes, Mater. Des., 2012, 39, p 131–139CrossRef
19.
Zurück zum Zitat C. Su, L. Lu, and M. Lai, Recrystallization and Grain Growth of Deformed Magnesium Alloy, Philos. Mag., 2008, 88(2), p 181–200CrossRef C. Su, L. Lu, and M. Lai, Recrystallization and Grain Growth of Deformed Magnesium Alloy, Philos. Mag., 2008, 88(2), p 181–200CrossRef
20.
Zurück zum Zitat A.S.H. Kabir et al., Influence of Static Precipitation on Microstructure and Texture of Annealed Cold-Rolled Mg-Al-Sn Alloys, Metall. Mater. Trans. B, 2015, 46(4), p 1674–1683CrossRef A.S.H. Kabir et al., Influence of Static Precipitation on Microstructure and Texture of Annealed Cold-Rolled Mg-Al-Sn Alloys, Metall. Mater. Trans. B, 2015, 46(4), p 1674–1683CrossRef
21.
Zurück zum Zitat H.-Y. Wang et al., Influence of Grain Size on Deformation Mechanisms in Rolled Mg-3Al-3Sn Alloy at Room Temperature, Mater. Sci. Eng. A, 2011, 528(29), p 8790–8794CrossRef H.-Y. Wang et al., Influence of Grain Size on Deformation Mechanisms in Rolled Mg-3Al-3Sn Alloy at Room Temperature, Mater. Sci. Eng. A, 2011, 528(29), p 8790–8794CrossRef
22.
Zurück zum Zitat N. Stanford and M.R. Barnett, The Origin of “Rare Earth” Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility, Mater. Sci. Eng. A, 2008, 496(1), p 399–408CrossRef N. Stanford and M.R. Barnett, The Origin of “Rare Earth” Texture Development in Extruded Mg-Based Alloys and Its Effect on Tensile Ductility, Mater. Sci. Eng. A, 2008, 496(1), p 399–408CrossRef
23.
Zurück zum Zitat A. Luo, R. Mishra, and A. Sachdev, High-Ductility Magnesium-Zinc-Cerium Extrusion Alloys, Scr. Mater., 2011, 64(5), p 410–413CrossRef A. Luo, R. Mishra, and A. Sachdev, High-Ductility Magnesium-Zinc-Cerium Extrusion Alloys, Scr. Mater., 2011, 64(5), p 410–413CrossRef
24.
Zurück zum Zitat S.R. Agnew et al., Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing, Scr. Mater., 2004, 50(3), p 377–381CrossRef S.R. Agnew et al., Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing, Scr. Mater., 2004, 50(3), p 377–381CrossRef
25.
Zurück zum Zitat G. Gaurav et al., Synthesis and Effect of Misch Metal on Mechanical Properties of Conventional Cast Mg-Al-Zn-Sn-Pb Alloy System, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 2015, 231(7), p 627–637 G. Gaurav et al., Synthesis and Effect of Misch Metal on Mechanical Properties of Conventional Cast Mg-Al-Zn-Sn-Pb Alloy System, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 2015, 231(7), p 627–637
27.
Zurück zum Zitat P. Poddar and K. Sahoo, Microstructure and Mechanical Properties of Conventional Cast and Rheocast Mg-Sn Based Alloys, Mater. Sci. Eng. A, 2012, 556, p 891–905CrossRef P. Poddar and K. Sahoo, Microstructure and Mechanical Properties of Conventional Cast and Rheocast Mg-Sn Based Alloys, Mater. Sci. Eng. A, 2012, 556, p 891–905CrossRef
28.
Zurück zum Zitat L. Zhang et al., Twinning and Mechanical Behavior of an Extruded Mg-6Al-3Sn Alloy with a Dual Basal Texture, Mater. Sci. Eng. A, 2013, 578, p 14–17CrossRef L. Zhang et al., Twinning and Mechanical Behavior of an Extruded Mg-6Al-3Sn Alloy with a Dual Basal Texture, Mater. Sci. Eng. A, 2013, 578, p 14–17CrossRef
29.
Zurück zum Zitat D. Luo et al., Microstructure Evolution and Tensile Properties of Hot Rolled Mg-6Al-3Sn Alloy Sheet at Elevated Temperatures, Mater. Sci. Eng. A, 2015, 643, p 149–155CrossRef D. Luo et al., Microstructure Evolution and Tensile Properties of Hot Rolled Mg-6Al-3Sn Alloy Sheet at Elevated Temperatures, Mater. Sci. Eng. A, 2015, 643, p 149–155CrossRef
30.
Zurück zum Zitat L. Zhang et al., Deformation Mechanisms of a Rolled Mg-6Al-3Sn Alloy During Plane Strain Compression, Mater. Sci. Eng. A, 2013, 578, p 362–369CrossRef L. Zhang et al., Deformation Mechanisms of a Rolled Mg-6Al-3Sn Alloy During Plane Strain Compression, Mater. Sci. Eng. A, 2013, 578, p 362–369CrossRef
31.
Zurück zum Zitat Y. Kun et al., Discharge Behavior and Electrochemical Properties of Mg-Al-Sn Alloy Anode for Seawater Activated Battery, Trans. Nonferr. Met. Soc. China, 2015, 25(4), p 1234–1240CrossRef Y. Kun et al., Discharge Behavior and Electrochemical Properties of Mg-Al-Sn Alloy Anode for Seawater Activated Battery, Trans. Nonferr. Met. Soc. China, 2015, 25(4), p 1234–1240CrossRef
32.
Zurück zum Zitat L. Zhang et al., Slip-Induced Texture Evolution of Rolled Mg-6Al-3Sn Alloy During Uniaxial Tension Along Rolling and Transverse Directions, Mater. Sci. Eng. A, 2014, 597, p 376–380CrossRef L. Zhang et al., Slip-Induced Texture Evolution of Rolled Mg-6Al-3Sn Alloy During Uniaxial Tension Along Rolling and Transverse Directions, Mater. Sci. Eng. A, 2014, 597, p 376–380CrossRef
33.
Zurück zum Zitat ASTM E 112-13, Standard Test Methods for Determining Average Grain Size, West Conshohocken, PA, 2014, p 1–28 ASTM E 112-13, Standard Test Methods for Determining Average Grain Size, West Conshohocken, PA, 2014, p 1–28
34.
Zurück zum Zitat P.N. Kalu and D.R. Waryoba, A JMAK-Microhardness Model for Quantifying the Kinetics of Restoration Mechanisms in Inhomogeneous Microstructure, Mater. Sci. Eng. A, 2007, 464(1), p 68–75CrossRef P.N. Kalu and D.R. Waryoba, A JMAK-Microhardness Model for Quantifying the Kinetics of Restoration Mechanisms in Inhomogeneous Microstructure, Mater. Sci. Eng. A, 2007, 464(1), p 68–75CrossRef
35.
Zurück zum Zitat S.P. Chen et al., Quantification of the Recrystallization Behaviour in Al-Alloy AA1050, J. Mater. Sci., 2002, 37(5), p 989–995CrossRef S.P. Chen et al., Quantification of the Recrystallization Behaviour in Al-Alloy AA1050, J. Mater. Sci., 2002, 37(5), p 989–995CrossRef
36.
Zurück zum Zitat N.A. Raji and O.O. Oluwole, Recrystallization Kinetics and Microstructure Evolution of Annealed Cold-Drawn Low-Carbon Steel, J. Cryst. Process Technol., 2013, 3(04), p 163CrossRef N.A. Raji and O.O. Oluwole, Recrystallization Kinetics and Microstructure Evolution of Annealed Cold-Drawn Low-Carbon Steel, J. Cryst. Process Technol., 2013, 3(04), p 163CrossRef
37.
Zurück zum Zitat X. Ma, et al., Recrystallization Behavior of the Magnesium Alloy ZE20, in Magnesium Technology 2015, Springer, 2015, p 177–182 X. Ma, et al., Recrystallization Behavior of the Magnesium Alloy ZE20, in Magnesium Technology 2015, Springer, 2015, p 177–182
38.
Zurück zum Zitat M. Oyarzábal, A. Martínez-de-Guerenu, and I. Gutiérrez, Effect of Stored Energy and Recovery on the Overall Recrystallization Kinetics of a Cold Rolled Low Carbon Steel, Mater. Sci. Eng. A, 2008, 485(1), p 200–209CrossRef M. Oyarzábal, A. Martínez-de-Guerenu, and I. Gutiérrez, Effect of Stored Energy and Recovery on the Overall Recrystallization Kinetics of a Cold Rolled Low Carbon Steel, Mater. Sci. Eng. A, 2008, 485(1), p 200–209CrossRef
39.
Zurück zum Zitat T. Sakai et al., Recovery and Recrystallization of Polycrystalline Nickel After Hot Working, Acta Metall., 1988, 36(7), p 1781–1790CrossRef T. Sakai et al., Recovery and Recrystallization of Polycrystalline Nickel After Hot Working, Acta Metall., 1988, 36(7), p 1781–1790CrossRef
40.
Zurück zum Zitat F. Humphreys, Review Grain and Subgrain Characterisation by Electron Backscatter Diffraction, J. Mater. Sci., 2001, 36(16), p 3833–3854CrossRef F. Humphreys, Review Grain and Subgrain Characterisation by Electron Backscatter Diffraction, J. Mater. Sci., 2001, 36(16), p 3833–3854CrossRef
41.
Zurück zum Zitat R. Mahmudi and S. Moeendarbari, Effects of Sn Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 566, p 30–39CrossRef R. Mahmudi and S. Moeendarbari, Effects of Sn Additions on the Microstructure and Impression Creep Behavior of AZ91 Magnesium Alloy, Mater. Sci. Eng. A, 2013, 566, p 30–39CrossRef
42.
Zurück zum Zitat E. Doernberg, A. Kozlov, and R. Schmid-Fetzer, Experimental Investigation and Thermodynamic Calculation of Mg-Al-Sn Phase Equilibria and Solidification Microstructures, J. Phase Equilibria Diffus., 2007, 28(6), p 523–535CrossRef E. Doernberg, A. Kozlov, and R. Schmid-Fetzer, Experimental Investigation and Thermodynamic Calculation of Mg-Al-Sn Phase Equilibria and Solidification Microstructures, J. Phase Equilibria Diffus., 2007, 28(6), p 523–535CrossRef
43.
Zurück zum Zitat H.-Y. Wang et al., First-Principles Study of the Generalized Stacking Fault Energy in Mg-3Al-3Sn Alloy, Scr. Mater., 2011, 65(8), p 723–726CrossRef H.-Y. Wang et al., First-Principles Study of the Generalized Stacking Fault Energy in Mg-3Al-3Sn Alloy, Scr. Mater., 2011, 65(8), p 723–726CrossRef
44.
Zurück zum Zitat E. Sterling, Precipitation and Recrystallization in a Binary Magnesium-Neodymium Alloy, University of British Columbia, Vancouver, 2015 E. Sterling, Precipitation and Recrystallization in a Binary Magnesium-Neodymium Alloy, University of British Columbia, Vancouver, 2015
45.
Zurück zum Zitat S. Liang, Deformation and Its Effect on Recrystallization in Magnesium Alloy AZ31, Master’s thesis, McMaster University, Hamilton, ON, Canada, 2012 S. Liang, Deformation and Its Effect on Recrystallization in Magnesium Alloy AZ31, Master’s thesis, McMaster University, Hamilton, ON, Canada, 2012
46.
Zurück zum Zitat A. Dehghan-Manshadi and P. Hodgson, Dependency of Recrystallization Mechanism to the Initial Grain Size, Metall. Mater. Trans. A, 2008, 39(12), p 2830CrossRef A. Dehghan-Manshadi and P. Hodgson, Dependency of Recrystallization Mechanism to the Initial Grain Size, Metall. Mater. Trans. A, 2008, 39(12), p 2830CrossRef
47.
Zurück zum Zitat S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic Recrystallisation and the Development of Microstructure During the High Temperature Deformation of Magnesium, Acta Metall., 1982, 30(10), p 1909–1919CrossRef S.E. Ion, F.J. Humphreys, and S.H. White, Dynamic Recrystallisation and the Development of Microstructure During the High Temperature Deformation of Magnesium, Acta Metall., 1982, 30(10), p 1909–1919CrossRef
48.
Zurück zum Zitat H.S. Zurob, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49(20), p 4183–4190CrossRef H.S. Zurob, Y. Brechet, and G. Purdy, A Model for the Competition of Precipitation and Recrystallization in Deformed Austenite, Acta Mater., 2001, 49(20), p 4183–4190CrossRef
Metadaten
Titel
Study of Static Recrystallization Behavior of a Mg-6Al-3Sn Alloy
verfasst von
Gaurav Gaurav
R. Sarvesha
Sudhanshu S. Singh
Rajesh Prasad
Jayant Jain
Publikationsdatum
16.05.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04104-0

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Engineering and Performance 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.