Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2018

30.10.2017

Study on a novel composite coating based on PDMS doped with modified graphene oxide

verfasst von: Jijun Tang, Wei Yao, Weili Li, Jie Xu, Lei Jin, Jide Zhang, Zexiao Xu

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The low surface activity of graphene oxide (GO) stemming from its large conjugated electronic structure can easily affect the dispersion behavior of GO-based polymer matrices. This significantly undermines the properties of the resulting composite materials. Therefore, in order to increase the GO surface activity for use in polymer-based composites, GO was modified using silane coupling agent which was then doped into polydimethylsiloxane (PDMS) polymer to prepare novel paints by sol–gel reaction strategy. The subsequent novel composite coatings based on PDMS/modified GO (mGO) were finally cured with tetraethoxysilane as the hardening agent in the presence of dibutyltin dilaurate catalyst. The effect of doping mGO into PDMS polymer was systematically studied using infrared spectroscopy, micro-Raman spectroscopy, TEM, SEM, XRD, TGA, mechanical test, thermal conductivity test, and the erosion resistance test. It was concluded that the phase compatibility between GO and PDMS was enhanced due to the new interconnecting chemical bonds brought about by the mGO in the composite.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Xu, FJ, Qiu, ZM, “Research and Application Progress of Silicone Rubber Materials in Aviation.” Elastomer, 19 60–64 (2009) Xu, FJ, Qiu, ZM, “Research and Application Progress of Silicone Rubber Materials in Aviation.” Elastomer, 19 60–64 (2009)
2.
Zurück zum Zitat Wang, Q, Gao, W, Xie, Z, “Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease.” Appl. Polym. Sci., 89 2397 (2003)CrossRef Wang, Q, Gao, W, Xie, Z, “Highly Thermally Conductive Room-Temperature-Vulcanized Silicone Rubber and Silicone Grease.” Appl. Polym. Sci., 89 2397 (2003)CrossRef
3.
Zurück zum Zitat Li, W, Shen, W, Yao, W, Tang, J, Xu, J, Jin, L, Zhang, J, Xu, Z, “A Novel Acrylate-PDMS Composite Latex with Controlled Phase Compatibility Prepared by Emulsion Polymerization.” J. Coat. Technol. Res., (2017). doi:10.1007/s11998-017-9923-8 Li, W, Shen, W, Yao, W, Tang, J, Xu, J, Jin, L, Zhang, J, Xu, Z, “A Novel Acrylate-PDMS Composite Latex with Controlled Phase Compatibility Prepared by Emulsion Polymerization.” J. Coat. Technol. Res., (2017). doi:10.​1007/​s11998-017-9923-8
4.
Zurück zum Zitat Han, Z, Fina, A, “Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites.” Rev. Prog. Polym. Sci., 36 914–944 (2011)CrossRef Han, Z, Fina, A, “Thermal Conductivity of Carbon Nanotubes and Their Polymer Nanocomposites.” Rev. Prog. Polym. Sci., 36 914–944 (2011)CrossRef
5.
Zurück zum Zitat Yu, A, Ramesh, P, Sun, X, Bekyarova, E, Itkis, ME, Haddon, RC, “Modeling of Thermal Conductivity of Graphite Nanosheet Composites.” Adv. Mater., 20 4740–4744 (2008)CrossRef Yu, A, Ramesh, P, Sun, X, Bekyarova, E, Itkis, ME, Haddon, RC, “Modeling of Thermal Conductivity of Graphite Nanosheet Composites.” Adv. Mater., 20 4740–4744 (2008)CrossRef
6.
Zurück zum Zitat Yang, KM, Chen, FL, “Structure and Properties of Natural Rubber/Montmorillonite Nanocomposites Prepared by Mixing Intercalation Method.” Rubber Ind., 52 118–123 (2005) Yang, KM, Chen, FL, “Structure and Properties of Natural Rubber/Montmorillonite Nanocomposites Prepared by Mixing Intercalation Method.” Rubber Ind., 52 118–123 (2005)
7.
Zurück zum Zitat He, Y, Chao Chen, Z, Xiang Ma, L, “Thermal Conductivity and Mechanical Properties of Silicone Rubber Filled with Different Particle Sized SiC.” Adv. Mater. Res., 87–88 137–142 (2010) He, Y, Chao Chen, Z, Xiang Ma, L, “Thermal Conductivity and Mechanical Properties of Silicone Rubber Filled with Different Particle Sized SiC.” Adv. Mater. Res., 87–88 137–142 (2010)
8.
Zurück zum Zitat Wang, JJ, Yi, XS, “Effects of Interfacial Thermal Barrier Resistance and Particle Shape and Size on the Thermal Conductivity of AlN/PI Composites.” Compos. Sci. Technol., 64 1623 (2004)CrossRef Wang, JJ, Yi, XS, “Effects of Interfacial Thermal Barrier Resistance and Particle Shape and Size on the Thermal Conductivity of AlN/PI Composites.” Compos. Sci. Technol., 64 1623 (2004)CrossRef
9.
Zurück zum Zitat Agari, Y, Ueda, A, Tanaka, M, “Thermal Conductivity of a Polymer Filled with Particles in the Wide Range from Low to Super-High Volume Content.” Appl. Polym. Sci., 40 929 (1990)CrossRef Agari, Y, Ueda, A, Tanaka, M, “Thermal Conductivity of a Polymer Filled with Particles in the Wide Range from Low to Super-High Volume Content.” Appl. Polym. Sci., 40 929 (1990)CrossRef
10.
Zurück zum Zitat Mu, QH, Feng, SY, “Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation.” Thermochim. Acata, 462 70–75 (2007)CrossRef Mu, QH, Feng, SY, “Thermal Conductivity of Graphite/Silicone Rubber Prepared by Solution Intercalation.” Thermochim. Acata, 462 70–75 (2007)CrossRef
11.
Zurück zum Zitat Li, W, Huang, D, Xing, XY, et al., “Study the Factors Affecting the Performance of Organic–Inorganic Hybrid Coatings.” J. Appl. Polym. Sci., 131 8558–8572 (2014) Li, W, Huang, D, Xing, XY, et al., “Study the Factors Affecting the Performance of Organic–Inorganic Hybrid Coatings.” J. Appl. Polym. Sci., 131 8558–8572 (2014)
12.
Zurück zum Zitat Ma, LX, et al., “The Effect of Temperature on Performance of Powder Activated Carbon-I Membrane Biological Reactor (PAC-IMBR).” Key Eng. Mater., 501 88–93 (2012)CrossRef Ma, LX, et al., “The Effect of Temperature on Performance of Powder Activated Carbon-I Membrane Biological Reactor (PAC-IMBR).” Key Eng. Mater., 501 88–93 (2012)CrossRef
13.
Zurück zum Zitat Geim, AK, Novoselov, KS, “The Rise of Graphene.” Nat. Mater., 6 183–191 (2007)CrossRef Geim, AK, Novoselov, KS, “The Rise of Graphene.” Nat. Mater., 6 183–191 (2007)CrossRef
14.
Zurück zum Zitat Matte, HSSR, Subrahmanyam, KS, Rao, KV, et al., “Quenching of Fluorescence of Aromatic Molecules by Graphene Due to Electron Transfer.” J. Phys. Chem. Lett., 1 572–580 (2010)CrossRef Matte, HSSR, Subrahmanyam, KS, Rao, KV, et al., “Quenching of Fluorescence of Aromatic Molecules by Graphene Due to Electron Transfer.” J. Phys. Chem. Lett., 1 572–580 (2010)CrossRef
15.
Zurück zum Zitat Rao, CNR, Sood, AK, Subrahmanyam, KS, Govindaraj, A, et al., ChemInform Abstract: “Graphene: The New Two-Dimensional Nanomaterial.” Angew. Chem. Int. Ed., 48 7752–7777 (2009)CrossRef Rao, CNR, Sood, AK, Subrahmanyam, KS, Govindaraj, A, et al., ChemInform Abstract: “Graphene: The New Two-Dimensional Nanomaterial.” Angew. Chem. Int. Ed., 48 7752–7777 (2009)CrossRef
16.
Zurück zum Zitat Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA, “Materials and Methods: Electric Field Effect in Atomically Thin Carbon Films.” Science, 306 666–669 (2004)CrossRef Novoselov, KS, Geim, AK, Morozov, SV, Jiang, D, Zhang, Y, Dubonos, SV, Grigorieva, IV, Firsov, AA, “Materials and Methods: Electric Field Effect in Atomically Thin Carbon Films.” Science, 306 666–669 (2004)CrossRef
17.
Zurück zum Zitat Kamat, PV, “Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support.” J. Phys. Chem. Lett., 1 520–527 (2010)CrossRef Kamat, PV, “Graphene-Based Nanoarchitectures. Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Carbon Support.” J. Phys. Chem. Lett., 1 520–527 (2010)CrossRef
18.
Zurück zum Zitat Li, LS, Yan, X, “Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction.” J. Phys. Chem. Lett., 257 2–2576 (2010) Li, LS, Yan, X, “Nitrogen-Doped Colloidal Graphene Quantum Dots and Their Size-Dependent Electrocatalytic Activity for the Oxygen Reduction Reaction.” J. Phys. Chem. Lett., 257 2–2576 (2010)
19.
Zurück zum Zitat Watcharotone, S, Dikin, DA, Stankovich, S, Piner, R, Jung, I, Dommett, GHB, Evmenenko, G, Wu, SE, Chen, SF, Liu, CP, Nguyen, ST, Ruoff, RS, “Graphene-Silica Composite Thin Films as Transparent Conductors.” Nano Lett., 7 1888–1892 (2007)CrossRef Watcharotone, S, Dikin, DA, Stankovich, S, Piner, R, Jung, I, Dommett, GHB, Evmenenko, G, Wu, SE, Chen, SF, Liu, CP, Nguyen, ST, Ruoff, RS, “Graphene-Silica Composite Thin Films as Transparent Conductors.” Nano Lett., 7 1888–1892 (2007)CrossRef
20.
Zurück zum Zitat Stankovich, S, Dikin, DA, Dommett, GHB, Kohlhaas, KM, Zimney, EJ, Stach, EA, Piner, RD, Nguyen, ST, Ruoff, RS, “Supplementary Information to Accompany: Graphene-Based Composite Materials.” Nature, 442 282–286 (2006)CrossRef Stankovich, S, Dikin, DA, Dommett, GHB, Kohlhaas, KM, Zimney, EJ, Stach, EA, Piner, RD, Nguyen, ST, Ruoff, RS, “Supplementary Information to Accompany: Graphene-Based Composite Materials.” Nature, 442 282–286 (2006)CrossRef
21.
Zurück zum Zitat Berger, C, Song, Z, Li, T, Li, X, Ogbazghi, AY, Feng, R, Dai, Z, Marchenkov, AN, Conrad, EH, First, PN, Heer, WA, “Ultrathin Epitaxial Graphite Layers: 2D Electron Gas Properties and a Route Towards Graphene Based Nanoelectronics.” J. Phys. Chem. B., 108 19912–19916 (2004)CrossRef Berger, C, Song, Z, Li, T, Li, X, Ogbazghi, AY, Feng, R, Dai, Z, Marchenkov, AN, Conrad, EH, First, PN, Heer, WA, “Ultrathin Epitaxial Graphite Layers: 2D Electron Gas Properties and a Route Towards Graphene Based Nanoelectronics.” J. Phys. Chem. B., 108 19912–19916 (2004)CrossRef
22.
Zurück zum Zitat Yang, W, Ratinac, K, Ringer, S, Thordarson, P, Gooding, J, Braet, F, “Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene.” Angew. Chem. Int. Ed., 49 2114–2138 (2010)CrossRef Yang, W, Ratinac, K, Ringer, S, Thordarson, P, Gooding, J, Braet, F, “Carbon Nanomaterials in Biosensors: Should You Use Nanotubes or Graphene.” Angew. Chem. Int. Ed., 49 2114–2138 (2010)CrossRef
23.
Zurück zum Zitat Kuilla, T, Bhadra, S, Yao, D, Kim, NH, Bose, S, Lee, H, “Recent Advances in Graphene Based Polymer Composites.” Prog. Polym. Sci., 35 1350–1375 (2010)CrossRef Kuilla, T, Bhadra, S, Yao, D, Kim, NH, Bose, S, Lee, H, “Recent Advances in Graphene Based Polymer Composites.” Prog. Polym. Sci., 35 1350–1375 (2010)CrossRef
24.
Zurück zum Zitat Jiang, TW, Jiang, T, Kuila, T, Kim, NH, et al., “Enhanced Mechanical Properties of Silanized Silica Nanoparticle Attached Graphene Oxide/Epoxy Composites.” Compos. Sci. Technol., 79 115–125 (2013)CrossRef Jiang, TW, Jiang, T, Kuila, T, Kim, NH, et al., “Enhanced Mechanical Properties of Silanized Silica Nanoparticle Attached Graphene Oxide/Epoxy Composites.” Compos. Sci. Technol., 79 115–125 (2013)CrossRef
25.
Zurück zum Zitat Kang, HL, et al., “Using a Green Method to Develop Graphene Oxide/Elastomers Nanocomposites with Combination of High Barrier and Mechanical Performance.” Compos. Sci. Technol., 92 1–8 (2014)CrossRef Kang, HL, et al., “Using a Green Method to Develop Graphene Oxide/Elastomers Nanocomposites with Combination of High Barrier and Mechanical Performance.” Compos. Sci. Technol., 92 1–8 (2014)CrossRef
26.
Zurück zum Zitat Pan, B, Zhang, S, Li, W, et al., “Tribological and Mechanical Investigation of MC Nylon Reinforced by Modified Graphene Oxide.” J. Wear, 31 395–401 (2012)CrossRef Pan, B, Zhang, S, Li, W, et al., “Tribological and Mechanical Investigation of MC Nylon Reinforced by Modified Graphene Oxide.” J. Wear, 31 395–401 (2012)CrossRef
27.
Zurück zum Zitat Long, YM, Zhou, CH, Zhang, ZL, et al., “Shifting and Non-shifting Fluorescence Emitted by Carbon Nanodots.” J. Mater. Chem., 22 6088–6096 (2012)CrossRef Long, YM, Zhou, CH, Zhang, ZL, et al., “Shifting and Non-shifting Fluorescence Emitted by Carbon Nanodots.” J. Mater. Chem., 22 6088–6096 (2012)CrossRef
28.
Zurück zum Zitat Freeman, R, Finder, T, Bahshi, L, “Beta-Cyclodextrin-Modified CdSe/ZnS Quantum Dots for Sensing and Chiroselective Analysis.” Nano Lett., 9 322 (2009)CrossRef Freeman, R, Finder, T, Bahshi, L, “Beta-Cyclodextrin-Modified CdSe/ZnS Quantum Dots for Sensing and Chiroselective Analysis.” Nano Lett., 9 322 (2009)CrossRef
29.
Zurück zum Zitat Ferrari, AC, Meyer, JC, Scardaci, V, Casiraghi, C, Lazzeri, M, Mauri, F, Piscanec, S, Jang, D, Novoselov, KS, Roth, S, “Raman Spectrum of Graphene and Graphene Layers.” Phys. Rev. Lett., 97 18740 (2006) Ferrari, AC, Meyer, JC, Scardaci, V, Casiraghi, C, Lazzeri, M, Mauri, F, Piscanec, S, Jang, D, Novoselov, KS, Roth, S, “Raman Spectrum of Graphene and Graphene Layers.” Phys. Rev. Lett., 97 18740 (2006)
30.
Zurück zum Zitat Shen, J, Hu, Y, Li, C, Qin, C, Shi, M, Ye, M, “Layer-by-Layer Self-Assembly of Graphene Nanoplatelets.” Langmuir, 25 6122 (2009)CrossRef Shen, J, Hu, Y, Li, C, Qin, C, Shi, M, Ye, M, “Layer-by-Layer Self-Assembly of Graphene Nanoplatelets.” Langmuir, 25 6122 (2009)CrossRef
31.
Zurück zum Zitat Szabó, T, Berkesi, O, Forgó, P, et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides.” J. Chem. Mater., 18 2740–2749 (2006)CrossRef Szabó, T, Berkesi, O, Forgó, P, et al., “Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides.” J. Chem. Mater., 18 2740–2749 (2006)CrossRef
32.
Zurück zum Zitat Chen, ZK, Yang, JP, Nie, QQ, Fu, SY, Huang, YG, “Reinforcement of Epoxy Resins with Multi-walled Carbon Nanotubes for Enhancing Cryogenic Mechanical Properties.” Polymer, 50 4753–4759 (2009)CrossRef Chen, ZK, Yang, JP, Nie, QQ, Fu, SY, Huang, YG, “Reinforcement of Epoxy Resins with Multi-walled Carbon Nanotubes for Enhancing Cryogenic Mechanical Properties.” Polymer, 50 4753–4759 (2009)CrossRef
33.
Zurück zum Zitat Danes, F, Garnier, B, Pupuis, T, “Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler.” Int. J. Thermophys., 24 771–784 (2003)CrossRef Danes, F, Garnier, B, Pupuis, T, “Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler.” Int. J. Thermophys., 24 771–784 (2003)CrossRef
Metadaten
Titel
Study on a novel composite coating based on PDMS doped with modified graphene oxide
verfasst von
Jijun Tang
Wei Yao
Weili Li
Jie Xu
Lei Jin
Jide Zhang
Zexiao Xu
Publikationsdatum
30.10.2017
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2018
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-017-9991-9

Weitere Artikel der Ausgabe 2/2018

Journal of Coatings Technology and Research 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.