Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2024

01.04.2024

Study on electrical, thermal, mechanical and corrosion resistance properties of conductive silicone rubber for polymer-based metal composite grounding electrodes

verfasst von: Yunjian Wu, Fujin Cai, Kaidong Xu, Ying Liu, Xiaoxing Zhang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The power grounding grid is a critical apparatus for ensuring the safe operation of electrical networks. However, the long-term burial of grounding grids underground makes them susceptible to soil corrosion, undermining their grounding effectiveness and posing threats to personnel and equipment safety. This paper developed silicone rubber with excellent mechanical properties, outstanding corrosion resistance, and high electrical conductivity to mitigate the corrosion rate of grounding electrodes and extend the lifespan of grounding grids. The effects of graphite and carbon nanotubes mixed conductive fillers on silicone rubber’s electrical, thermal, mechanical, and corrosion resistance were investigated. The results show that when the addition amount of carbon nanotubes and graphite mixed conductive filler is less than 4%, the content of conductive filler increases with the increase of the content of conductive filler. The electrical conductivity, tensile strength, thermal conductivity, and thermal stability of conductive silicone rubber gradually increase, and its corrosion resistance and adhesion are unaffected. With a filler loading of only 4 wt%, the silicone rubber achieves an electrical conductivity of 0.41 s/cm, a tensile strength of 4.08 MPa, and a fracture elongation of 113%. These results confirm that the corrosion resistance, heat resistance, and adhesion meet the requirements of grounding electrodes. The outcomes of this research provide robust support for the advancement of green electrical equipment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.A. deAraujo, R.A. Flauzino, V. Cillo Moro et al., Modeling and simulation of surge arresters for lightning protection of distribution systems. IEEE Latin Am. 13(7), 2225–2231 (2015)CrossRef M.A. deAraujo, R.A. Flauzino, V. Cillo Moro et al., Modeling and simulation of surge arresters for lightning protection of distribution systems. IEEE Latin Am. 13(7), 2225–2231 (2015)CrossRef
2.
Zurück zum Zitat Y. Hu, J. Ruan, R. Gong et al., Flexible graphite composite electrical grounding material and its application in tower grounding grid of power transmission system. Power Syst. Technol. 38(10), 2851–2857 (2014) Y. Hu, J. Ruan, R. Gong et al., Flexible graphite composite electrical grounding material and its application in tower grounding grid of power transmission system. Power Syst. Technol. 38(10), 2851–2857 (2014)
3.
Zurück zum Zitat Z. Zhang, Y. Dan, J. Zou et al., Research on discharging current distribution of grounding electrodes. IEEE Access 7, 59287–59298 (2019)CrossRef Z. Zhang, Y. Dan, J. Zou et al., Research on discharging current distribution of grounding electrodes. IEEE Access 7, 59287–59298 (2019)CrossRef
4.
Zurück zum Zitat C. Xu, X. Hu, Investigation of anti-corrosive metallic material for earthing grid. Power Syst. Technol. 27(8), 77–79 (2003) C. Xu, X. Hu, Investigation of anti-corrosive metallic material for earthing grid. Power Syst. Technol. 27(8), 77–79 (2003)
5.
Zurück zum Zitat N.M. Nor, A. Haddad, H. Griffiths et al., Characterization of ionization phenomena in soils under fast Impulses. IEEE Trans. Power Deliv. 21(1), 353–361 (2006)CrossRef N.M. Nor, A. Haddad, H. Griffiths et al., Characterization of ionization phenomena in soils under fast Impulses. IEEE Trans. Power Deliv. 21(1), 353–361 (2006)CrossRef
6.
Zurück zum Zitat D.S. Li, Y. Ye, X.J. Liao et al., Novel preparation and characteristics of graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11, 1642–1650 (2018)CrossRef D.S. Li, Y. Ye, X.J. Liao et al., Novel preparation and characteristics of graphene nanoplatelets/aluminum nanocomposites. Nano Res. 11, 1642–1650 (2018)CrossRef
7.
Zurück zum Zitat O. Arkhypov, D.O. KovalOv, D.I. Usov et al., In-service degradation of the pipe steel of grounding anodes. Mater. Sci. 52, 240–245 (2016)CrossRef O. Arkhypov, D.O. KovalOv, D.I. Usov et al., In-service degradation of the pipe steel of grounding anodes. Mater. Sci. 52, 240–245 (2016)CrossRef
8.
Zurück zum Zitat Y.V. Verbovytskyi, I.Y. Zavalii, New metal-hydride materials based on R2–xMgxNi4 alloys for chemical current sources. Mater. Sci. 52, 747–759 (2017)CrossRef Y.V. Verbovytskyi, I.Y. Zavalii, New metal-hydride materials based on R2–xMgxNi4 alloys for chemical current sources. Mater. Sci. 52, 747–759 (2017)CrossRef
9.
Zurück zum Zitat R. Moriche, M. Sánchez, A. Jiménez-Suárez et al., Electrically conductive functionalized-GNP/epoxy based composites: from nanocomposite to multiscale glass fibre composite material. Compos. Part. B Eng. 98, 49–55 (2016)CrossRef R. Moriche, M. Sánchez, A. Jiménez-Suárez et al., Electrically conductive functionalized-GNP/epoxy based composites: from nanocomposite to multiscale glass fibre composite material. Compos. Part. B Eng. 98, 49–55 (2016)CrossRef
10.
Zurück zum Zitat Z. Xinhua, Y. Aijun, N. Kaibin et al., Study on corrosion resistance of nickel-rich conductive coating. Coat. Ind. 45(3), 1–6 (2015) Z. Xinhua, Y. Aijun, N. Kaibin et al., Study on corrosion resistance of nickel-rich conductive coating. Coat. Ind. 45(3), 1–6 (2015)
11.
Zurück zum Zitat Y.J. Zheng, Y. Li, K. Dai et al., Conductive thermoplastic polyurethane composites with tunable piezo resistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part. A 101, 41–49 (2017)CrossRef Y.J. Zheng, Y. Li, K. Dai et al., Conductive thermoplastic polyurethane composites with tunable piezo resistivity by modulating the filler dimensionality for flexible strain sensors. Compos. Part. A 101, 41–49 (2017)CrossRef
12.
Zurück zum Zitat X.W. Zhao, C.G. Zang, Q.K. Ma et al., Thermal and electrical properties of composites based on (3-mercaptopropyl) trimethoxysilane- and Cu-coated carbon fiber and silicone rubber. Mater. Sci. 51(8), 4088–4095 (2016)CrossRef X.W. Zhao, C.G. Zang, Q.K. Ma et al., Thermal and electrical properties of composites based on (3-mercaptopropyl) trimethoxysilane- and Cu-coated carbon fiber and silicone rubber. Mater. Sci. 51(8), 4088–4095 (2016)CrossRef
13.
Zurück zum Zitat H. Sun, Y. Bu, H. Liu et al., Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Sci. Bull. 67(16), 1669–1678 (2022)CrossRef H. Sun, Y. Bu, H. Liu et al., Superhydrophobic conductive rubber band with synergistic dual conductive layer for wide-range sensitive strain sensor. Sci. Bull. 67(16), 1669–1678 (2022)CrossRef
14.
Zurück zum Zitat H.C. Jin, T. Zhang, W. Bing et al., Antifouling performance and mechanism of elastic graphene–silicone rubber composite membranes. Mater. Chem. B 7(3), 488–497 (2019)CrossRef H.C. Jin, T. Zhang, W. Bing et al., Antifouling performance and mechanism of elastic graphene–silicone rubber composite membranes. Mater. Chem. B 7(3), 488–497 (2019)CrossRef
15.
Zurück zum Zitat X.T. Ma, Z.P. Jiang, F.S. Wang et al., Numerical study of thermal effect in silicone rubber filledwith carbonyl iron powder under microwave radiation. Mater. Sci. 56, 10264–10281 (2021)CrossRef X.T. Ma, Z.P. Jiang, F.S. Wang et al., Numerical study of thermal effect in silicone rubber filledwith carbonyl iron powder under microwave radiation. Mater. Sci. 56, 10264–10281 (2021)CrossRef
16.
Zurück zum Zitat R.M. Ma, X. Wan, T. Zhang et al., Role of molecular polarity in thermal transport of boron nitrideorganic molecule composites. ACS Omega 3(10), 12530–12534 (2018)CrossRefPubMedPubMedCentral R.M. Ma, X. Wan, T. Zhang et al., Role of molecular polarity in thermal transport of boron nitrideorganic molecule composites. ACS Omega 3(10), 12530–12534 (2018)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Y. Bu, T. Shen, W. Yang et al., Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human motion monitoring and E-skin. Sci. Bull. 66(18), 1849–1857 (2021)CrossRef Y. Bu, T. Shen, W. Yang et al., Ultrasensitive strain sensor based on superhydrophobic microcracked conductive Ti3C2Tx MXene/paper for human motion monitoring and E-skin. Sci. Bull. 66(18), 1849–1857 (2021)CrossRef
18.
Zurück zum Zitat S. Zhou, S. Qian, W. Wang et al., Fabrication of a hydrophilic low-friction poly (hydroxyethyl methacrylate) coating on silicon rubber. Langmuir 37(45), 13493–13500 (2021)CrossRefPubMed S. Zhou, S. Qian, W. Wang et al., Fabrication of a hydrophilic low-friction poly (hydroxyethyl methacrylate) coating on silicon rubber. Langmuir 37(45), 13493–13500 (2021)CrossRefPubMed
19.
Zurück zum Zitat S.C. Shits, P. Shah, A review on silicone rubber. Natl. Acad. Sci. Lett. 4, 355–366 (2013)CrossRef S.C. Shits, P. Shah, A review on silicone rubber. Natl. Acad. Sci. Lett. 4, 355–366 (2013)CrossRef
20.
Zurück zum Zitat W. Ting, C. Hong, Q. Kai et al., Research progress of conductive rubber with carbon based conductive fillers. Rubber Ind. 66(6), 475–477 (2019) W. Ting, C. Hong, Q. Kai et al., Research progress of conductive rubber with carbon based conductive fillers. Rubber Ind. 66(6), 475–477 (2019)
21.
Zurück zum Zitat L. Wang, W. Wang, Y. Fu et al., Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly composites. Part. B Eng. 90, 457–464 (2016)CrossRef L. Wang, W. Wang, Y. Fu et al., Enhanced electrical and mechanical properties of rubber/graphene film through layer-by-layer electrostatic assembly composites. Part. B Eng. 90, 457–464 (2016)CrossRef
22.
Zurück zum Zitat T.J. Ge, M. Zhang, K. Tang et al., Diisocyanate-modified graphene oxide/hydroxyl-terminated silicone rubber composites for improved thermal conductivity. Mater. Chem. Phys. 252, 123250 (2020)CrossRef T.J. Ge, M. Zhang, K. Tang et al., Diisocyanate-modified graphene oxide/hydroxyl-terminated silicone rubber composites for improved thermal conductivity. Mater. Chem. Phys. 252, 123250 (2020)CrossRef
23.
Zurück zum Zitat J.L. Lin, S.M. Su, Y.B. He et al., Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New. Carbon Mater. 35, 66–72 (2020)CrossRef J.L. Lin, S.M. Su, Y.B. He et al., Improving thermal and mechanical properties of the alumina filled silicone rubber composite by incorporating carbon nanotubes. New. Carbon Mater. 35, 66–72 (2020)CrossRef
25.
Zurück zum Zitat ASTM-D412, Tensile test methods for vulcanized rubber and thermoplastic elastomers. ASTM-D412, Tensile test methods for vulcanized rubber and thermoplastic elastomers.
26.
Zurück zum Zitat T∕CMSA 0004-2018, Flexible composite grounding body. T∕CMSA 0004-2018, Flexible composite grounding body.
27.
28.
Zurück zum Zitat J. Zhou, H. Sun, X. Zheng et al., Conductive mechanism of particle-filled conductive composites. Ceramics 30(3), 281–285 (2009) J. Zhou, H. Sun, X. Zheng et al., Conductive mechanism of particle-filled conductive composites. Ceramics 30(3), 281–285 (2009)
29.
Zurück zum Zitat A. Krainoi, C. Kummerlöwe, Y. Nakaramontri et al., Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym. Test. 66, 122–136 (2018)CrossRef A. Krainoi, C. Kummerlöwe, Y. Nakaramontri et al., Influence of critical carbon nanotube loading on mechanical and electrical properties of epoxidized natural rubber nanocomposites. Polym. Test. 66, 122–136 (2018)CrossRef
30.
Zurück zum Zitat N. Nanying, L. Suting, Z. Rou et al., High elasticity and conductive stability carbon black/carbon tube/silicon rubber design and preparation of adhesive composites. Sci. Bull. 63, 3677–3686 (2018) N. Nanying, L. Suting, Z. Rou et al., High elasticity and conductive stability carbon black/carbon tube/silicon rubber design and preparation of adhesive composites. Sci. Bull. 63, 3677–3686 (2018)
Metadaten
Titel
Study on electrical, thermal, mechanical and corrosion resistance properties of conductive silicone rubber for polymer-based metal composite grounding electrodes
verfasst von
Yunjian Wu
Fujin Cai
Kaidong Xu
Ying Liu
Xiaoxing Zhang
Publikationsdatum
01.04.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2024
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12458-y

Weitere Artikel der Ausgabe 11/2024

Journal of Materials Science: Materials in Electronics 11/2024 Zur Ausgabe

Neuer Inhalt