Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 7-8/2019

10.11.2019 | ORIGINAL ARTICLE

Study on manufacturing quality of micro-ultrasonic machining with force control

verfasst von: Junfeng He, Zhongning Guo, Haishan Lian, Junjie Wang, Jiangwen Liu, Xiaolei Chen

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 7-8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Micro-ultrasonic machining (MUSM) is an effective way of processing microstructures made from hard and brittle materials, although controlling the fluctuation of the machining force during processing is difficult. To control the quality of micro-holes fabricated in hard and brittle materials, MUSM with force control (MUSMFC) is used to study the edge chipping rate (ECR) and material removal rate (MRR) during micro-hole fabrication. The process is controlled using a force sensor and a processing control strategy. Various experiments are designed to assess the processing efficacy. Comparative experiments indicate that the ECR with MUSMFC is superior to that with traditional MUSM. Single-factor experiments show that the ultrasonic power and the fluctuation of the machining force exert a significant influence on the ECR. The influence of the spindle speed on the ECR is small. Orthogonal experiments show that the fluctuations of the machining force and ultrasonic power have large impacts on the MRR. The spindle speed has a significant impact on the MRR as well, whereas the mass fraction has little effect. The best combination of ECR and MRR is obtained using a spindle speed of 500 rpm, a machining-force fluctuation of 0.1 N, an ultrasonic power of 50 W, and a mass fraction of 10%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang C, Cong W, Feng P, Pei Z (2014) Rotary ultrasonic machining of optical k9 glass using compressed air as coolant: a feasibility study. Proc Inst Mech Eng B 228:504–514CrossRef Zhang C, Cong W, Feng P, Pei Z (2014) Rotary ultrasonic machining of optical k9 glass using compressed air as coolant: a feasibility study. Proc Inst Mech Eng B 228:504–514CrossRef
2.
Zurück zum Zitat Zeng WM, Li ZC, Pei ZJ, Treadwell C (2005) Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int J Mach Tools Manuf 45:1468–1473CrossRef Zeng WM, Li ZC, Pei ZJ, Treadwell C (2005) Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics. Int J Mach Tools Manuf 45:1468–1473CrossRef
3.
Zurück zum Zitat Singh RP, Singhal S (2017) Rotary ultrasonic machining of macor ceramic: an experimental investigation and microstructure analysis. Mater Manuf Process 32:1–13CrossRef Singh RP, Singhal S (2017) Rotary ultrasonic machining of macor ceramic: an experimental investigation and microstructure analysis. Mater Manuf Process 32:1–13CrossRef
4.
Zurück zum Zitat He JF, Guo ZN, Lian HS, Liu JW, Yao Z, Deng Y (2018) Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining. J Mater Process Technol 264:10–20CrossRef He JF, Guo ZN, Lian HS, Liu JW, Yao Z, Deng Y (2018) Experiments and simulations of micro-hole manufacturing by electrophoresis-assisted micro-ultrasonic machining. J Mater Process Technol 264:10–20CrossRef
5.
Zurück zum Zitat Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48:771–777CrossRef Pei ZJ, Ferreira PM, Haselkorn M (1995) Plastic flow in rotary ultrasonic machining of ceramics. J Mater Process Technol 48:771–777CrossRef
6.
Zurück zum Zitat Singh RP, Singhal S (2016) Rotary ultrasonic machining: a review. Mater Manuf Process 31:1795–1824CrossRef Singh RP, Singhal S (2016) Rotary ultrasonic machining: a review. Mater Manuf Process 31:1795–1824CrossRef
7.
Zurück zum Zitat Yuan S, Fan H, Amin M, Zhang C, Guo M (2015) A cutting force prediction dynamic model for side milling of ceramic matrix composites c/sic based on rotary ultrasonic machining. Int J Adv Manuf Technol 86:37–48CrossRef Yuan S, Fan H, Amin M, Zhang C, Guo M (2015) A cutting force prediction dynamic model for side milling of ceramic matrix composites c/sic based on rotary ultrasonic machining. Int J Adv Manuf Technol 86:37–48CrossRef
8.
Zurück zum Zitat Wang ZY, Rajurkar KP (1996) Dynamic analysis of the ultrasonic machining process. J Manuf Sci Eng 118:376–381CrossRef Wang ZY, Rajurkar KP (1996) Dynamic analysis of the ultrasonic machining process. J Manuf Sci Eng 118:376–381CrossRef
9.
Zurück zum Zitat Lee TC, Chan CW (1997) Mechanism of the ultrasonic machining of ceramic composites. J Mater Process Technol 71:195–201CrossRef Lee TC, Chan CW (1997) Mechanism of the ultrasonic machining of ceramic composites. J Mater Process Technol 71:195–201CrossRef
10.
Zurück zum Zitat Yu Z, Hu X, Rajurkar KP (2006) Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon. CIRP Ann-Manuf Technol 55:201–204CrossRef Yu Z, Hu X, Rajurkar KP (2006) Influence of debris accumulation on material removal and surface roughness in micro ultrasonic machining of silicon. CIRP Ann-Manuf Technol 55:201–204CrossRef
11.
Zurück zum Zitat Wang J, Feng P, Zhang J, Zhang C, Pei Z (2016) Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials. Int J Mach Tools Manuf 101:18–27CrossRef Wang J, Feng P, Zhang J, Zhang C, Pei Z (2016) Modeling the dependency of edge chipping size on the material properties and cutting force for rotary ultrasonic drilling of brittle materials. Int J Mach Tools Manuf 101:18–27CrossRef
12.
Zurück zum Zitat Liu D, Cong WL, Pei ZJ, Tang Y (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52:77–84CrossRef Liu D, Cong WL, Pei ZJ, Tang Y (2012) A cutting force model for rotary ultrasonic machining of brittle materials. Int J Mach Tools Manuf 52:77–84CrossRef
13.
Zurück zum Zitat Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of cfrp: a mechanistic predictive model for cutting force. Ultrasonics 54:663–675CrossRef Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of cfrp: a mechanistic predictive model for cutting force. Ultrasonics 54:663–675CrossRef
14.
Zurück zum Zitat Xiao X, Zheng K, Liao W, Meng H (2016) Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics. Int J Mach Tools Manuf 104:58–67CrossRef Xiao X, Zheng K, Liao W, Meng H (2016) Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics. Int J Mach Tools Manuf 104:58–67CrossRef
15.
Zurück zum Zitat Qin N, Pei ZJ, Guo DM (2009) Ultrasonic-vibration-assisted grinding of titanium: cutting force modeling with design of experiments. ASME 2009 International Manufacturing Science and Engineering Conference, Volume 2, West Lafayette, Indiana, USA, October 4–7 Qin N, Pei ZJ, Guo DM (2009) Ultrasonic-vibration-assisted grinding of titanium: cutting force modeling with design of experiments. ASME 2009 International Manufacturing Science and Engineering Conference, Volume 2, West Lafayette, Indiana, USA, October 4–7
16.
Zurück zum Zitat Zhang C, Zhang J, Feng P (2013) Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. Int J Adv Manuf Technol 69:161–170CrossRef Zhang C, Zhang J, Feng P (2013) Mathematical model for cutting force in rotary ultrasonic face milling of brittle materials. Int J Adv Manuf Technol 69:161–170CrossRef
17.
Zurück zum Zitat Qin N, Pei ZJ, Cong WL, Treadwell C, Guo DM (2011) Ultrasonic vibration-assisted grinding of brittle materials: a mechanistic model for cutting force, Proceedings of the 2011 ASME International Manufacturing Science and Engineering Conference, Corvallis, OR, June 13–17 Qin N, Pei ZJ, Cong WL, Treadwell C, Guo DM (2011) Ultrasonic vibration-assisted grinding of brittle materials: a mechanistic model for cutting force, Proceedings of the 2011 ASME International Manufacturing Science and Engineering Conference, Corvallis, OR, June 13–17
18.
Zurück zum Zitat Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83:1025–1036CrossRef Bai W, Sun R, Gao Y, Leopold J (2016) Analysis and modeling of force in orthogonal elliptical vibration cutting. Int J Adv Manuf Technol 83:1025–1036CrossRef
19.
Zurück zum Zitat Wang J, Zhang J, Feng P, Guo P (2018) Experimental and theoretical investigation on critical cutting force in rotary ultrasonic drilling of brittle materials and composites. Int J Mech Sci 135:555–564CrossRef Wang J, Zhang J, Feng P, Guo P (2018) Experimental and theoretical investigation on critical cutting force in rotary ultrasonic drilling of brittle materials and composites. Int J Mech Sci 135:555–564CrossRef
20.
Zurück zum Zitat Lv D, Huang Y, Wang H, Tang Y, Wu X (2013) Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass. J Mater Process Technol 213:1548–1557CrossRef Lv D, Huang Y, Wang H, Tang Y, Wu X (2013) Improvement effects of vibration on cutting force in rotary ultrasonic machining of BK7 glass. J Mater Process Technol 213:1548–1557CrossRef
21.
Zurück zum Zitat Yuan S, Zhang C, Amin M, Fan H, Liu M (2015) Development of a cutting force prediction model based on brittle fracture for carbon fiber reinforced polymers for rotary ultrasonic drilling. Int J Adv Manuf Technol 81:1223–1231CrossRef Yuan S, Zhang C, Amin M, Fan H, Liu M (2015) Development of a cutting force prediction model based on brittle fracture for carbon fiber reinforced polymers for rotary ultrasonic drilling. Int J Adv Manuf Technol 81:1223–1231CrossRef
22.
Zurück zum Zitat David JC (2012) Fundamentals and applications of ultrasonic waves. Boca Raton, London David JC (2012) Fundamentals and applications of ultrasonic waves. Boca Raton, London
23.
Zurück zum Zitat Lian HS, Guo ZN, Liu JW, Huang ZG, He JF (2016) Experimental study of electrophoresis assisted micro-ultrasonic machining. Int J Adv Manuf Technol 85:2115–2124CrossRef Lian HS, Guo ZN, Liu JW, Huang ZG, He JF (2016) Experimental study of electrophoresis assisted micro-ultrasonic machining. Int J Adv Manuf Technol 85:2115–2124CrossRef
Metadaten
Titel
Study on manufacturing quality of micro-ultrasonic machining with force control
verfasst von
Junfeng He
Zhongning Guo
Haishan Lian
Junjie Wang
Jiangwen Liu
Xiaolei Chen
Publikationsdatum
10.11.2019
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 7-8/2019
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-019-04438-y

Weitere Artikel der Ausgabe 7-8/2019

The International Journal of Advanced Manufacturing Technology 7-8/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.