Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2018

29.01.2018

Studying the effect of the controlled off-stoichiometry on the properties of Zn2SnO4 nanoparticles for DSSC applications

verfasst von: Morteza Asemi, Majid Ghanaatshoar

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the influence of off-stoichiometry and annealing temperature on the structural, electrical and optical properties of the zinc stannate nanoparticles prepared by conventional solid-state reaction method were studied. The structural studies revealed that the phase purity of the synthesized nanoparticles increases with annealing temperature. Furthermore, the reduction of the molar ratio of ZnO to SnO2 from 2 to 1.8 increased the electrical conductivity of the nanoparticles. The electrical conductivity improvement was ascribed to the excess Sn atoms in the nanoparticles which can fill the place of zinc atoms (Zn2+) or occupy interstitial sites in the zinc stannate lattice and lead to creation of more free electrons. Subsequently, the resultant nanoparticles were used as photoanode material. The fabricated dye-sensitized solar cells with 1.8 molar ratio of ZnO to SnO2 displayed better photovoltaic performance. Dye loading measurement on the Zn2SnO4-based photoelectrode revealed that the excess Sn in this structure not only increases the electrical conductivity of the Zn2SnO4 nanoparticles but also enhances their dye loading.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C. 111, 2834–2860 (2007)CrossRef P.V. Kamat, Meeting the clean energy demand: nanostructure architectures for solar energy conversion. J. Phys. Chem. C. 111, 2834–2860 (2007)CrossRef
2.
Zurück zum Zitat S. Shogh, R. Mohammadpour, A. Iraji zad, N. Taghavinia, Improved photovoltaic performance of nanostructured solar cells by neodymium-doped TiO2 photoelectrode. Mater. Lett. 159, 273–275 (2015)CrossRef S. Shogh, R. Mohammadpour, A. Iraji zad, N. Taghavinia, Improved photovoltaic performance of nanostructured solar cells by neodymium-doped TiO2 photoelectrode. Mater. Lett. 159, 273–275 (2015)CrossRef
3.
Zurück zum Zitat M. Javadi, S. Alizadeh, Y. Khosravi, Y. Abdi, Electron transport in quasi-two-dimensional porous network of titania nanoparticles, incorporating electrical and optical advantages in dye-sensitized solar cells. ChemPhysChem 17, 1–7 (2016)CrossRef M. Javadi, S. Alizadeh, Y. Khosravi, Y. Abdi, Electron transport in quasi-two-dimensional porous network of titania nanoparticles, incorporating electrical and optical advantages in dye-sensitized solar cells. ChemPhysChem 17, 1–7 (2016)CrossRef
4.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, The influence of TiO2 particle size and conductivity of the CuCrO2 nanoparticles on the performance of solid-state dye-sensitized solar cells. Bull. Mater. Sci. 40, 1379–1388 (2017)CrossRef M. Asemi, M. Ghanaatshoar, The influence of TiO2 particle size and conductivity of the CuCrO2 nanoparticles on the performance of solid-state dye-sensitized solar cells. Bull. Mater. Sci. 40, 1379–1388 (2017)CrossRef
5.
Zurück zum Zitat M. Asemi, S. Maleki, M. Ghanaatshoar, Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J. Sol-Gel Sci. Technol. 81, 645–651 (2017)CrossRef M. Asemi, S. Maleki, M. Ghanaatshoar, Cr-doped TiO2-based dye-sensitized solar cells with Cr-doped TiO2 blocking layer. J. Sol-Gel Sci. Technol. 81, 645–651 (2017)CrossRef
6.
Zurück zum Zitat L.P. D'Souza, R. Shwetharani, V. Amoli, C.A.N. Fernando, A.K. Sinha, R.G. Balakrishna, Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Mater. Des. 104, 346–354 (2016)CrossRef L.P. D'Souza, R. Shwetharani, V. Amoli, C.A.N. Fernando, A.K. Sinha, R.G. Balakrishna, Photoexcitation of neodymium doped TiO2 for improved performance in dye-sensitized solar cells. Mater. Des. 104, 346–354 (2016)CrossRef
7.
Zurück zum Zitat M. Zhu, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells. Ceram. Int. 40, 2337–2342 (2014)CrossRef M. Zhu, L. Chen, H. Gong, M. Zi, B. Cao, A novel TiO2 nanorod/nanoparticle composite architecture to improve the performance of dye-sensitized solar cells. Ceram. Int. 40, 2337–2342 (2014)CrossRef
8.
Zurück zum Zitat C.J. Raj, K. Prabakar, S.N. Karthick, K.V. Hemalatha, M.K. Son, H.J. Kim, Banyan root structured Mg-doped ZnO photoanode dye-sensitized solar cells. J. Phys. Chem. C. 117, 2600–2607 (2013)CrossRef C.J. Raj, K. Prabakar, S.N. Karthick, K.V. Hemalatha, M.K. Son, H.J. Kim, Banyan root structured Mg-doped ZnO photoanode dye-sensitized solar cells. J. Phys. Chem. C. 117, 2600–2607 (2013)CrossRef
9.
Zurück zum Zitat R.K. Chava, W.M. Lee, S.Y. Oh, K.U. Jeong, Y.T. Yu, Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Sol. Energy Mater. Sol. Cells. 161, 255–262 (2017)CrossRef R.K. Chava, W.M. Lee, S.Y. Oh, K.U. Jeong, Y.T. Yu, Improvement in light harvesting and device performance of dye sensitized solar cells using electrophoretic deposited hollow TiO2 NPs scattering layer. Sol. Energy Mater. Sol. Cells. 161, 255–262 (2017)CrossRef
10.
Zurück zum Zitat R.K. Chava, M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76 (2017)CrossRef R.K. Chava, M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 692, 67–76 (2017)CrossRef
11.
Zurück zum Zitat R.K. Chava, Y.H. Im, M. Kang, Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Mater. Res. Bull. 94, 399–407 (2017)CrossRef R.K. Chava, Y.H. Im, M. Kang, Nitrogen doped carbon quantum dots as a green luminescent sensitizer to functionalize ZnO nanoparticles for enhanced photovoltaic conversion devices. Mater. Res. Bull. 94, 399–407 (2017)CrossRef
12.
Zurück zum Zitat B. Tan, E. Toman, Y. Li, Y. Wu, Zinc Stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRef B. Tan, E. Toman, Y. Li, Y. Wu, Zinc Stannate (Zn2SnO4) dye-sensitized solar cells. J. Am. Chem. Soc. 129, 4162–4163 (2007)CrossRef
13.
Zurück zum Zitat Q. Dai, J. Chen, L. Lu, J. Tang, W. Wang, pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications. Nano Lett. 12, 4187–4193 (2012)CrossRef Q. Dai, J. Chen, L. Lu, J. Tang, W. Wang, pulsed laser deposition of CdSe quantum dots on Zn2SnO4 nanowires and their photovoltaic applications. Nano Lett. 12, 4187–4193 (2012)CrossRef
14.
Zurück zum Zitat H. Kou, S. Yang, Detailed investigation on the band energetics of nanostructured Zn2SnO4 electrodes in aqueous electrolytes. J. Phys. Chem. C. 116, 6376–6382 (2012)CrossRef H. Kou, S. Yang, Detailed investigation on the band energetics of nanostructured Zn2SnO4 electrodes in aqueous electrolytes. J. Phys. Chem. C. 116, 6376–6382 (2012)CrossRef
15.
Zurück zum Zitat T. Lana-Villarreal, G. Boschloo, A. Hagfeldt, Nanostructured zinc stannate as semiconductor working electrodes for dye-sensitized solar cells. J. Phys. Chem. C. 111, 5549–5556 (2007)CrossRef T. Lana-Villarreal, G. Boschloo, A. Hagfeldt, Nanostructured zinc stannate as semiconductor working electrodes for dye-sensitized solar cells. J. Phys. Chem. C. 111, 5549–5556 (2007)CrossRef
16.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, Boosting the photovoltaic performance of Zn2SnO4-based dye-sensitized solar cells by Si doping into Zn2SnO4. J. Am. Ceram. Soc. 100, 5584–5592 (2017)CrossRef M. Asemi, M. Ghanaatshoar, Boosting the photovoltaic performance of Zn2SnO4-based dye-sensitized solar cells by Si doping into Zn2SnO4. J. Am. Ceram. Soc. 100, 5584–5592 (2017)CrossRef
17.
Zurück zum Zitat S.Z. Liu, T.X. Wang, L.Y. Yang, Low temperature preparation of nanocrystalline SrTiO3 and BaTiO3 from alkaline earth nitrates and TiO2 nanocrystals. Powder Technol. 212, 378–381 (2011)CrossRef S.Z. Liu, T.X. Wang, L.Y. Yang, Low temperature preparation of nanocrystalline SrTiO3 and BaTiO3 from alkaline earth nitrates and TiO2 nanocrystals. Powder Technol. 212, 378–381 (2011)CrossRef
18.
Zurück zum Zitat L.B. Li, Y.F. Wang, H.S. Rao, W.Q. Wu, K.N. Li, C.Y. Su, D.B. Kuang, Hierarchical Macroporous Zn2SnO4-ZnO nanorod composite photoelectrodes for efficient CdS/CdSe quantum dot Co-sensitized solar cells. ACS Appl. Mater. Interfaces. 5, 11865–11871 (2013)CrossRef L.B. Li, Y.F. Wang, H.S. Rao, W.Q. Wu, K.N. Li, C.Y. Su, D.B. Kuang, Hierarchical Macroporous Zn2SnO4-ZnO nanorod composite photoelectrodes for efficient CdS/CdSe quantum dot Co-sensitized solar cells. ACS Appl. Mater. Interfaces. 5, 11865–11871 (2013)CrossRef
19.
Zurück zum Zitat P.P. Das, P.S. Devi, Formation of Self-Assembled defect-free Zn2SnO4 nanostructures from binary oxides without the kirkendall effect. Inorg. Chem. 53, 10797–10799 (2014)CrossRef P.P. Das, P.S. Devi, Formation of Self-Assembled defect-free Zn2SnO4 nanostructures from binary oxides without the kirkendall effect. Inorg. Chem. 53, 10797–10799 (2014)CrossRef
20.
Zurück zum Zitat Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu, Z. Zou, Hexagonal nanoplate-textured micro-octahedron Zn2SnO4: combined effects toward enhanced efficiencies of dye-sensitized solar cell and photoreduction of CO2 into hydrocarbon fuels. Cryst. Growth Des. 12, 1476–1481 (2012)CrossRef Z. Li, Y. Zhou, J. Zhang, W. Tu, Q. Liu, T. Yu, Z. Zou, Hexagonal nanoplate-textured micro-octahedron Zn2SnO4: combined effects toward enhanced efficiencies of dye-sensitized solar cell and photoreduction of CO2 into hydrocarbon fuels. Cryst. Growth Des. 12, 1476–1481 (2012)CrossRef
21.
Zurück zum Zitat D. Hwang, J.S. Jin, H. Lee, H.J. Kim, H. Chung, D.Y. Kim, S.Y. Jang, D. Kim, Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci. Rep. 4, 7353 (2014)CrossRef D. Hwang, J.S. Jin, H. Lee, H.J. Kim, H. Chung, D.Y. Kim, S.Y. Jang, D. Kim, Hierarchically structured Zn2SnO4 nanobeads for high-efficiency dye-sensitized solar cells. Sci. Rep. 4, 7353 (2014)CrossRef
22.
Zurück zum Zitat Y.C. Liang, C.L. Huang, C.Y. Hu, X.S. Deng, H. Zhong, Morphology and optical properties of ternary Zn-Sn-O semiconductor nanowires with catalyst-free growth. J. Alloys Compd. 537, 111–116 (2012)CrossRef Y.C. Liang, C.L. Huang, C.Y. Hu, X.S. Deng, H. Zhong, Morphology and optical properties of ternary Zn-Sn-O semiconductor nanowires with catalyst-free growth. J. Alloys Compd. 537, 111–116 (2012)CrossRef
23.
Zurück zum Zitat B. Cheng, G. Wu, Z. Ouyang, X. Su, Y. Xiao, S. Lei, Effects of interface states on photoexcited carriers in ZnO/Zn2SnO4 type-II radial heterostructure nanowires. ACS Appl. Mater. Interfaces. 6, 4057–4062 (2014)CrossRef B. Cheng, G. Wu, Z. Ouyang, X. Su, Y. Xiao, S. Lei, Effects of interface states on photoexcited carriers in ZnO/Zn2SnO4 type-II radial heterostructure nanowires. ACS Appl. Mater. Interfaces. 6, 4057–4062 (2014)CrossRef
24.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method. J. Sol-Gel Sci. Technol. 70, 416–421 (2014)CrossRef M. Asemi, M. Ghanaatshoar, Preparation of CuCrO2 nanoparticles with narrow size distribution by sol-gel method. J. Sol-Gel Sci. Technol. 70, 416–421 (2014)CrossRef
25.
Zurück zum Zitat M. Asemi, A. Suddar, M. Ghanaatshoar, Increasing the specific surface area of Cr-doped TiO2 nanoparticles by controlling the drying time for DSSC applications. J. Mater. Sci. Mater. Electron. 28, 15233–15238 (2017)CrossRef M. Asemi, A. Suddar, M. Ghanaatshoar, Increasing the specific surface area of Cr-doped TiO2 nanoparticles by controlling the drying time for DSSC applications. J. Mater. Sci. Mater. Electron. 28, 15233–15238 (2017)CrossRef
26.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. J. Mater. Sci. 52, 489–503 (2017)CrossRef M. Asemi, M. Ghanaatshoar, Hydrothermal growth of one-dimensional Ce-doped TiO2 nanostructures for solid-state DSSCs comprising Mg-doped CuCrO2. J. Mater. Sci. 52, 489–503 (2017)CrossRef
27.
Zurück zum Zitat M.H. Fathi, M. Kharaziha, The effect of fluorine ion on fabrication of nanostructure forsterite during mechanochemical synthesis. J. Alloys Compd. 472, 540–545 (2009)CrossRef M.H. Fathi, M. Kharaziha, The effect of fluorine ion on fabrication of nanostructure forsterite during mechanochemical synthesis. J. Alloys Compd. 472, 540–545 (2009)CrossRef
28.
Zurück zum Zitat C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)CrossRef C. Murugesan, G. Chandrasekaran, Impact of Gd3+ substitution on the structural, magnetic and electrical properties of cobalt ferrite nanoparticles. RSC Adv. 5, 73714–73725 (2015)CrossRef
29.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram. Int. 42, 6664–6672 (2016)CrossRef M. Asemi, M. Ghanaatshoar, Conductivity improvement of CuCrO2 nanoparticles by Zn doping and their application in solid-state dye-sensitized solar cells. Ceram. Int. 42, 6664–6672 (2016)CrossRef
30.
Zurück zum Zitat S. Jeong, Y. Jeong, J. Moon, Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C. 112, 11082–11085 (2008)CrossRef S. Jeong, Y. Jeong, J. Moon, Solution-processed zinc tin oxide semiconductor for thin-film transistors. J. Phys. Chem. C. 112, 11082–11085 (2008)CrossRef
31.
Zurück zum Zitat P.J. Kuo, S.P. Chang, S.J. Chang, Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents. Electron. Mater. Lett. 10, 89–94 (2014)CrossRef P.J. Kuo, S.P. Chang, S.J. Chang, Investigation of zinc-tin-oxide thin-film transistors with varying SnO2 contents. Electron. Mater. Lett. 10, 89–94 (2014)CrossRef
32.
Zurück zum Zitat Y.H. Kim, J.I. Han, S.K. Park, Effect of zinc/tin composition ratio on the operational stability of solution-processed zinc-tin-oxide thin-film transistors. IEEE Electron. Dev. Lett. 33, 50–52 (2012)CrossRef Y.H. Kim, J.I. Han, S.K. Park, Effect of zinc/tin composition ratio on the operational stability of solution-processed zinc-tin-oxide thin-film transistors. IEEE Electron. Dev. Lett. 33, 50–52 (2012)CrossRef
33.
Zurück zum Zitat R.D. Chandra, M. Rao, K. Zhang, R.R. Prabhakar, C. Shi, J. Zhang, S.G. Mhaisalkar, N. Mathews, Tuning electrical properties in amorphous zinc tin oxide thin films for solution processed electronics. ACS Appl. Mater. Interfaces. 6, 773–777 (2014)CrossRef R.D. Chandra, M. Rao, K. Zhang, R.R. Prabhakar, C. Shi, J. Zhang, S.G. Mhaisalkar, N. Mathews, Tuning electrical properties in amorphous zinc tin oxide thin films for solution processed electronics. ACS Appl. Mater. Interfaces. 6, 773–777 (2014)CrossRef
34.
Zurück zum Zitat M. Jannesari, M. Asemi, M. Ghanaatshoar, Sol-gel preparation of Fe and Al co-doped ZnO nanostructured materials. J. Sol-Gel Sci. Technol. 83, 181–189 (2017)CrossRef M. Jannesari, M. Asemi, M. Ghanaatshoar, Sol-gel preparation of Fe and Al co-doped ZnO nanostructured materials. J. Sol-Gel Sci. Technol. 83, 181–189 (2017)CrossRef
35.
Zurück zum Zitat W. Liu, G. Du, Y. Sun, Y. Xu, T. Yang, X. Wang, Y. Chang, F. Qiu, Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering: H2-induced property changes. Thin Solid Films. 515, 3057–3060 (2007)CrossRef W. Liu, G. Du, Y. Sun, Y. Xu, T. Yang, X. Wang, Y. Chang, F. Qiu, Al-doped ZnO thin films deposited by reactive frequency magnetron sputtering: H2-induced property changes. Thin Solid Films. 515, 3057–3060 (2007)CrossRef
36.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, Controllable growth of vertically aligned Bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs. Appl. Phys. A. 122, 853–863 (2016)CrossRef M. Asemi, M. Ghanaatshoar, Controllable growth of vertically aligned Bi-doped TiO2 nanorod arrays for all-oxide solid-state DSSCs. Appl. Phys. A. 122, 853–863 (2016)CrossRef
37.
Zurück zum Zitat K.P. Wang, H. Teng, Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys. 11, 9489–9496 (2009)CrossRef K.P. Wang, H. Teng, Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys. 11, 9489–9496 (2009)CrossRef
38.
Zurück zum Zitat M. Asemi, M. Ghanaatshoar, The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells. Appl. Phys. A. 122, 842–848 (2016)CrossRef M. Asemi, M. Ghanaatshoar, The influence of magnesium oxide interfacial layer on photovoltaic properties of dye-sensitized solar cells. Appl. Phys. A. 122, 842–848 (2016)CrossRef
39.
Zurück zum Zitat S. So, K. Lee, P. Schmuki, Ru-doped TiO2 nanotubes: Improved performance in dye-sensitized solar cells. Phys. Status Solidi RRL. 6, 169–171 (2012)CrossRef S. So, K. Lee, P. Schmuki, Ru-doped TiO2 nanotubes: Improved performance in dye-sensitized solar cells. Phys. Status Solidi RRL. 6, 169–171 (2012)CrossRef
40.
Zurück zum Zitat B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)CrossRef B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Doping high-surface-area mesoporous TiO2 microspheres with carbonate for visible light hydrogen production. Energy Environ. Sci. 7, 2592–2597 (2014)CrossRef
41.
Zurück zum Zitat Y. Ma, M. Xing, J. Zhang, B. Tian, F. Chen, Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater. 156, 145–152 (2012)CrossRef Y. Ma, M. Xing, J. Zhang, B. Tian, F. Chen, Synthesis of well ordered mesoporous Yb, N co-doped TiO2 with superior visible photocatalytic activity. Microporous Mesoporous Mater. 156, 145–152 (2012)CrossRef
Metadaten
Titel
Studying the effect of the controlled off-stoichiometry on the properties of Zn2SnO4 nanoparticles for DSSC applications
verfasst von
Morteza Asemi
Majid Ghanaatshoar
Publikationsdatum
29.01.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-8659-2

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Science: Materials in Electronics 8/2018 Zur Ausgabe

Neuer Inhalt