Skip to main content
Erschienen in: Rare Metals 7/2022

15.03.2022 | Original Article

Submicron single-crystalline LiNi0.5Mn1.5O4 cathode with modulated Mn3+ content enabling high capacity and fast lithium-ion kinetics

verfasst von: Zhao Fang, Xing-Liang Zhang, Xue-Yang Hou, Wen-Long Huang, Lin-Bo Li

Erschienen in: Rare Metals | Ausgabe 7/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Disordered single-crystalline LiNi0.5Mn1.5O4 (LNMO) cathode materials with different Mn3+ contents were prepared by a simple temperature control strategy of a solid-state reaction. The effects of the mutual modulation of the Mn3+ content and the bulk microstructure on the crystal structure and electrochemical properties of LNMO were systematically investigated. Results showed that a suitable Mn3+ content can enhance the structural stability and alleviate structural degradation and capacity fading. The excellent performance originates from the simultaneous inhibition of microcrack formation and side reaction with electrolytes, ensuring the rapid diffusion of Li+ during extraction and insertion. Consequently, the LNMO-800 sample delivers an excellent cycling stability with a capacity retention of 98.37% after 200 cycles, remarkable rate capacity of 115 mAh·g−1 at 10.0C, and rapid Li+ diffusion coefficient of 4.43 × 10–9 cm2·s−1. This work will allow for a deeper understanding of the coupling effect between Mn3+ content and bulk microstructure, especially in the design and development of Mn-based cathode materials.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
[1]
Zurück zum Zitat Ma J, Hu P, Cui GL, Chen LQ. Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem Mater. 2016;28(11):3578.CrossRef Ma J, Hu P, Cui GL, Chen LQ. Surface and interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem Mater. 2016;28(11):3578.CrossRef
[2]
Zurück zum Zitat Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of Co-free and Ni-rich LiNixMn1-xO2(0.5<x<1)cathode materials. Chin J Rare Metals. 2020;44(9):996. Pang GY, Zhuang WD, Bai XT, Ban LQ, Zhao CR, Sun XY. Research advances of Co-free and Ni-rich LiNixMn1-xO2(0.5<x<1)cathode materials. Chin J Rare Metals. 2020;44(9):996.
[3]
Zurück zum Zitat Pieczonka NPW, Liu ZY, Lu P, Olson KL, Moote J, Powell BR, Kim JH. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C. 2013;117(31):15947.CrossRef Pieczonka NPW, Liu ZY, Lu P, Olson KL, Moote J, Powell BR, Kim JH. Understanding transition-metal dissolution behavior in LiNi0.5Mn1.5O4 high-voltage spinel for lithium ion batteries. J Phys Chem C. 2013;117(31):15947.CrossRef
[4]
Zurück zum Zitat Xu HT, Zhang HR, Ma J, Xu GJ, Dong TT, Chen JC, Cui GL. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 2019;4(12):2871.CrossRef Xu HT, Zhang HR, Ma J, Xu GJ, Dong TT, Chen JC, Cui GL. Overcoming the challenges of 5 V spinel LiNi0.5Mn1.5O4 cathodes with solid polymer electrolytes. ACS Energy Lett. 2019;4(12):2871.CrossRef
[5]
Zurück zum Zitat Liu TC, Dai A, Lu J, Yuan YF, Xiao YG, Yu L, Li M, Gim J, Ma L, Liu JJ, Zhang C, Li LX, Zheng JX, Ren Y, Wu TP, Shahbazian-Yassar R, Wen JG, Pan F, Amine K. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat Commun. 2019;10(1):1. Liu TC, Dai A, Lu J, Yuan YF, Xiao YG, Yu L, Li M, Gim J, Ma L, Liu JJ, Zhang C, Li LX, Zheng JX, Ren Y, Wu TP, Shahbazian-Yassar R, Wen JG, Pan F, Amine K. Correlation between manganese dissolution and dynamic phase stability in spinel-based lithium-ion battery. Nat Commun. 2019;10(1):1.
[6]
Zurück zum Zitat Aktekin B, Lacey MJ, Nordh T, Younesi R, Tengstedt C, Zippich W, Brandell D, Edström K. Understanding the capacity loss in LiNi0.5Mn1.5O4-Li4Ti5O12 lithium-ion cells at ambient and elevated temperatures. J Phys Chem C. 2018;122(21):11234.CrossRef Aktekin B, Lacey MJ, Nordh T, Younesi R, Tengstedt C, Zippich W, Brandell D, Edström K. Understanding the capacity loss in LiNi0.5Mn1.5O4-Li4Ti5O12 lithium-ion cells at ambient and elevated temperatures. J Phys Chem C. 2018;122(21):11234.CrossRef
[7]
Zurück zum Zitat Kan WH, Kuppan S, Cheng L, Doeff M, Nanda J, Huq A, Chen GY. Crystal chemistry and electrochemistry of LixMn1.5Ni0.5O4 solid solution cathode materials. Chem Mater. 2017;29(16):6818.CrossRef Kan WH, Kuppan S, Cheng L, Doeff M, Nanda J, Huq A, Chen GY. Crystal chemistry and electrochemistry of LixMn1.5Ni0.5O4 solid solution cathode materials. Chem Mater. 2017;29(16):6818.CrossRef
[8]
Zurück zum Zitat Liu J, Huq A, Moorhead-Rosenberg Z, Manthiram A, Page K. Nanoscale Ni/Mn ordering in the high voltage spinel cathode LiNi0.5Mn1.5O4. Chem Mater. 2016;28(19):6817.CrossRef Liu J, Huq A, Moorhead-Rosenberg Z, Manthiram A, Page K. Nanoscale Ni/Mn ordering in the high voltage spinel cathode LiNi0.5Mn1.5O4. Chem Mater. 2016;28(19):6817.CrossRef
[9]
Zurück zum Zitat Cabana J, Casas-Cabanas M, Omenya FO, Chernova NA, Zeng DL, Whittingham MS, Grey CP. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem Mater. 2012;24(15):2952.CrossRef Cabana J, Casas-Cabanas M, Omenya FO, Chernova NA, Zeng DL, Whittingham MS, Grey CP. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem Mater. 2012;24(15):2952.CrossRef
[10]
Zurück zum Zitat Liu HP, Liang GM, Gao C, Bi SF, Chen Q, Xie Y, Fan SS, Cao LX, Pang WK, Guo ZP. Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy. 2019;66:104100.CrossRef Liu HP, Liang GM, Gao C, Bi SF, Chen Q, Xie Y, Fan SS, Cao LX, Pang WK, Guo ZP. Insight into the improved cycling stability of sphere-nanorod-like micro-nanostructured high voltage spinel cathode for lithium-ion batteries. Nano Energy. 2019;66:104100.CrossRef
[11]
Zurück zum Zitat Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.CrossRef Ji YR, Weng ST, Li XY, Zhang QH, Gu L. Atomic-scale structural evolution of electrode materials in Li-ion batteries: a review. Rare Met. 2020;39(3):205.CrossRef
[12]
Zurück zum Zitat Luo Y, Zhang YX, Yam LQ, Xie JY, Lv TL. Octahedral and porous spherical ordered LiNi0.5Mn1.5O4 spinel: the role of morphology on phase transition behavior and electrode/electrolyte interfacial properties. ACS Appl Mater Interfaces. 2018;10(37):31795.CrossRef Luo Y, Zhang YX, Yam LQ, Xie JY, Lv TL. Octahedral and porous spherical ordered LiNi0.5Mn1.5O4 spinel: the role of morphology on phase transition behavior and electrode/electrolyte interfacial properties. ACS Appl Mater Interfaces. 2018;10(37):31795.CrossRef
[13]
Zurück zum Zitat Wang LP, Li H, Huang XJ, Baudrin E. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4” Solid State Ionics. 2011;193(1):32.CrossRef Wang LP, Li H, Huang XJ, Baudrin E. A comparative study of Fd-3m and P4332 “LiNi0.5Mn1.5O4” Solid State Ionics. 2011;193(1):32.CrossRef
[14]
Zurück zum Zitat Moorhead-Rosenberg Z, Huq A, Manthiram A. Physical properties of Li1-xMn1.5Ni0.5O4 spinel as a function of lithium content and cation ordering: influence on rate performance as a cathode in lithium-ion batteries. Chem Mater. 2015;27(20):6934.CrossRef Moorhead-Rosenberg Z, Huq A, Manthiram A. Physical properties of Li1-xMn1.5Ni0.5O4 spinel as a function of lithium content and cation ordering: influence on rate performance as a cathode in lithium-ion batteries. Chem Mater. 2015;27(20):6934.CrossRef
[15]
Zurück zum Zitat Li S, Yang Y, Xie M, Zhang Q. Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method. Rare Met. 2017;36(4):277.CrossRef Li S, Yang Y, Xie M, Zhang Q. Synthesis and electrochemical performances of high-voltage LiNi0.5Mn1.5O4 cathode materials prepared by hydroxide co-precipitation method. Rare Met. 2017;36(4):277.CrossRef
[16]
Zurück zum Zitat Ben LB, Yu HL, Wu YD, Chen B, Zhao WW, Huang XJ. Ta2O5 coating as an HF barrier for improving the electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 at elevated temperatures. ACS Appl Energy Mater. 2018;1(10):5589. Ben LB, Yu HL, Wu YD, Chen B, Zhao WW, Huang XJ. Ta2O5 coating as an HF barrier for improving the electrochemical cycling performance of high-voltage spinel LiNi0.5Mn1.5O4 at elevated temperatures. ACS Appl Energy Mater. 2018;1(10):5589.
[17]
Zurück zum Zitat Liang GM, Wu ZB, Didier C, Zhang WC, Cuan J, Li BH, Ko KY, Hung PY, Lu CZ, Chen YZ, Leniec G, Kaczmarek SM, Johannessem B, Thomsen L, Peterson VK, Pang WK, Guo ZP. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew Chem Int Ed. 2020;59(26):10594.CrossRef Liang GM, Wu ZB, Didier C, Zhang WC, Cuan J, Li BH, Ko KY, Hung PY, Lu CZ, Chen YZ, Leniec G, Kaczmarek SM, Johannessem B, Thomsen L, Peterson VK, Pang WK, Guo ZP. A long cycle-life high-voltage spinel lithium-ion battery electrode achieved by site-selective doping. Angew Chem Int Ed. 2020;59(26):10594.CrossRef
[18]
Zurück zum Zitat Xiao J, Chen XL, Sushko PV, Sushko ML, Kovarik L, Feng JJ, Deng ZQ, Zheng JM, Graff GL, Nie ZM, Choi D, Liu J, Zhang JG, Whittingham MS. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater. 2012;24(16):2109.CrossRef Xiao J, Chen XL, Sushko PV, Sushko ML, Kovarik L, Feng JJ, Deng ZQ, Zheng JM, Graff GL, Nie ZM, Choi D, Liu J, Zhang JG, Whittingham MS. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv Mater. 2012;24(16):2109.CrossRef
[19]
Zurück zum Zitat Zheng JM, Xiao J, Yu XQ, Kovarik L, Gu M, Omenya F, Chen XL, Yang XQ, Liu J, Graff GL, Whittingham MS, Zhang JG. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys Chem Chem Phys. 2012;14(39):13515.CrossRef Zheng JM, Xiao J, Yu XQ, Kovarik L, Gu M, Omenya F, Chen XL, Yang XQ, Liu J, Graff GL, Whittingham MS, Zhang JG. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys Chem Chem Phys. 2012;14(39):13515.CrossRef
[20]
Zurück zum Zitat Liu SQ, Wang BY, Zhang X, Zhao S, Zhang ZH, Yu HJ. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter. 2021;4(5):1511.CrossRef Liu SQ, Wang BY, Zhang X, Zhao S, Zhang ZH, Yu HJ. Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries. Matter. 2021;4(5):1511.CrossRef
[21]
Zurück zum Zitat Zhu XH, Meng FQ, Zhang QH, Xue L, Zhu H, Lan S, Liu Q, Zhao J, Zhuang YH, Guo QB, Liu B, Gu L, Lu X, Ren YR, Xia H. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain. 2021;4(5):392.CrossRef Zhu XH, Meng FQ, Zhang QH, Xue L, Zhu H, Lan S, Liu Q, Zhao J, Zhuang YH, Guo QB, Liu B, Gu L, Lu X, Ren YR, Xia H. LiMnO2 cathode stabilized by interfacial orbital ordering for sustainable lithium-ion batteries. Nat Sustain. 2021;4(5):392.CrossRef
[22]
Zurück zum Zitat Huang YM, Dong YH, Li S, Lee J, Wang C, Zhu Z, Xue WJ, Li Y, Li J. Lithium manganese spinel cathodes for lithium-ion batteries. Adv Energy Mater. 2020;11(2):2000997.CrossRef Huang YM, Dong YH, Li S, Lee J, Wang C, Zhu Z, Xue WJ, Li Y, Li J. Lithium manganese spinel cathodes for lithium-ion batteries. Adv Energy Mater. 2020;11(2):2000997.CrossRef
[23]
Zurück zum Zitat Asl HY, Manthiram A. Reining in dissolved transition-metal ions. Science. 2020;369(6500):140.CrossRef Asl HY, Manthiram A. Reining in dissolved transition-metal ions. Science. 2020;369(6500):140.CrossRef
[24]
Zurück zum Zitat Li Y, Boris R, Brett LL. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett. 2010;13(8):A95.CrossRef Li Y, Boris R, Brett LL. Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem Solid-State Lett. 2010;13(8):A95.CrossRef
[25]
Zurück zum Zitat Li QH, Wang Y, Wang XL, Sun XR, Zhang JN, Yu XQ, Li H. Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl Mater Interfaces. 2019;12(2):2319.CrossRef Li QH, Wang Y, Wang XL, Sun XR, Zhang JN, Yu XQ, Li H. Investigations on the fundamental process of cathode electrolyte interphase formation and evolution of high-voltage cathodes. ACS Appl Mater Interfaces. 2019;12(2):2319.CrossRef
[26]
Zurück zum Zitat Wang WN, Meng DC, Qian GN, Xie SJ, Shen YB, Chen LW, Li XM, Rao QL, Che HY, Liu JB, He YS, Ma ZF, Li LS. Controlling particle size and phase purity of “single-crystal” LiNi0.5Mn1.5O4 in molten-salt-assisted synthesis. J Phys Chem C. 2020;124(51):27937.CrossRef Wang WN, Meng DC, Qian GN, Xie SJ, Shen YB, Chen LW, Li XM, Rao QL, Che HY, Liu JB, He YS, Ma ZF, Li LS. Controlling particle size and phase purity of “single-crystal” LiNi0.5Mn1.5O4 in molten-salt-assisted synthesis. J Phys Chem C. 2020;124(51):27937.CrossRef
[27]
Zurück zum Zitat Chemelewski KR, Lee ES, Li W, Manthiram A. Factors influencing the electrochemical properties of high-voltage spinel cathodes: relative impact of morphology and cation ordering. Chem Mater. 2013;25(14):2890.CrossRef Chemelewski KR, Lee ES, Li W, Manthiram A. Factors influencing the electrochemical properties of high-voltage spinel cathodes: relative impact of morphology and cation ordering. Chem Mater. 2013;25(14):2890.CrossRef
[28]
Zurück zum Zitat Zhang F, Lou SF, Li S, Yu ZJ, Liu QS, Dai A, Cao CT, Toney MF, Ge MY, Xiao XH, Lee WK, Yao YD, Deng JJ, Liu TC, Tang YP, Yin GP, Lu J, Su D, Wang JJ. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat Commun. 2020;11(1):1. Zhang F, Lou SF, Li S, Yu ZJ, Liu QS, Dai A, Cao CT, Toney MF, Ge MY, Xiao XH, Lee WK, Yao YD, Deng JJ, Liu TC, Tang YP, Yin GP, Lu J, Su D, Wang JJ. Surface regulation enables high stability of single-crystal lithium-ion cathodes at high voltage. Nat Commun. 2020;11(1):1.
[29]
Zurück zum Zitat Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi05Mn15O4 cathodes having two crystallographic structures: Fd\(\overline{3}\)m and P4332. Chem Mater. 2004; (5)16: 906 Kim JH, Myung ST, Yoon CS, Kang SG, Sun YK. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi05Mn15O4 cathodes having two crystallographic structures: Fd\(\overline{3}\)m and P4332. Chem Mater. 2004; (5)16: 906
[30]
Zurück zum Zitat Zhang JN, Sun G, Han Y, Yu FD, Qin XJ, Shao GJ, Wang ZB. Boosted electrochemical performance of LiNi0.5Mn1.5O4 via synergistic modification Li+-Conductive Li2ZrO3 coating layer and superficial Zr-doping. Electrochim Acta. 2020;343:136105.CrossRef Zhang JN, Sun G, Han Y, Yu FD, Qin XJ, Shao GJ, Wang ZB. Boosted electrochemical performance of LiNi0.5Mn1.5O4 via synergistic modification Li+-Conductive Li2ZrO3 coating layer and superficial Zr-doping. Electrochim Acta. 2020;343:136105.CrossRef
[31]
Zurück zum Zitat Aktekin B, Valvo M, Smith RI, Sørby MH, Marzano FL, Zipprich W, Brandell D, Edström K, Brant WR. Cation ordering and oxygen release in LiNi0.5-xMn1.5+xO4-y (LNMO): in situ neutron diffraction and performance in Li ion full cells. ACS Appl Energy Mater. 2019;2(5):3323.CrossRef Aktekin B, Valvo M, Smith RI, Sørby MH, Marzano FL, Zipprich W, Brandell D, Edström K, Brant WR. Cation ordering and oxygen release in LiNi0.5-xMn1.5+xO4-y (LNMO): in situ neutron diffraction and performance in Li ion full cells. ACS Appl Energy Mater. 2019;2(5):3323.CrossRef
[32]
Zurück zum Zitat Qian YX, Deng YF, Wan LN, Xu HJ, Qin XS, Chen GH. Investigation of the effect of extra lithium addition and postannealing on the electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. J Phys Chem C. 2014;118(29):15581.CrossRef Qian YX, Deng YF, Wan LN, Xu HJ, Qin XS, Chen GH. Investigation of the effect of extra lithium addition and postannealing on the electrochemical performance of high-voltage spinel LiNi0.5Mn1.5O4 cathode material. J Phys Chem C. 2014;118(29):15581.CrossRef
[33]
Zurück zum Zitat Kunduraci M, Amatucci GG. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc. 2006;153(7):A1345.CrossRef Kunduraci M, Amatucci GG. Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J Electrochem Soc. 2006;153(7):A1345.CrossRef
[34]
Zurück zum Zitat Zhu RN, Zhang SJ, Guo QX, Zhou Y, Li JT, Wang PF, Gong ZL. More than just a protection layer: inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials. Electrochim Acta. 2020;342:136074.CrossRef Zhu RN, Zhang SJ, Guo QX, Zhou Y, Li JT, Wang PF, Gong ZL. More than just a protection layer: inducing chemical interaction between Li3BO3 and LiNi0.5Mn1.5O4 to achieve stable high-rate cycling cathode materials. Electrochim Acta. 2020;342:136074.CrossRef
[35]
Zurück zum Zitat Amina R, Belhaouk I. Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode. J Power Sour. 2017;348:311.CrossRef Amina R, Belhaouk I. Part I: Electronic and ionic transport properties of the ordered and disordered LiNi0.5Mn1.5O4 spinel cathode. J Power Sour. 2017;348:311.CrossRef
[36]
Zurück zum Zitat Liu HD, Wang J, Zhang XF, Zhou D, Qi X, Qiu B, Fang JH, Kloepsch R, Schumacher G, Liu ZP, Li J. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces. 2016;8(7):4661.CrossRef Liu HD, Wang J, Zhang XF, Zhou D, Qi X, Qiu B, Fang JH, Kloepsch R, Schumacher G, Liu ZP, Li J. Morphological evolution of high-voltage spinel LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries: the critical effects of surface orientations and particle size. ACS Appl Mater Interfaces. 2016;8(7):4661.CrossRef
[37]
Zurück zum Zitat Tang D, Sun Y, Yang ZZ, Ben LB, Gu L, Huang XJ. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem Mater. 2014;26(11):3535.CrossRef Tang D, Sun Y, Yang ZZ, Ben LB, Gu L, Huang XJ. Surface structure evolution of LiMn2O4 cathode material upon charge/discharge. Chem Mater. 2014;26(11):3535.CrossRef
[38]
Zurück zum Zitat Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci. 2016;366:475.CrossRef Ilton ES, Post JE, Heaney PJ, Ling FT, Kerisit SN. XPS determination of Mn oxidation states in Mn (hydr)oxides. Appl Surf Sci. 2016;366:475.CrossRef
[39]
Zurück zum Zitat Mou JR, Deng YL, He LH, Zheng QJ, Jiang N, Li DM. Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5 V LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta. 2018;260:101.CrossRef Mou JR, Deng YL, He LH, Zheng QJ, Jiang N, Li DM. Critical roles of semi-conductive LaFeO3 coating in enhancing cycling stability and rate capability of 5 V LiNi0.5Mn1.5O4 cathode materials. Electrochim Acta. 2018;260:101.CrossRef
[40]
Zurück zum Zitat Song J, Shin DW, Lu YH, Amos CD, Manthiram A, Goodenough JB. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x=0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater. 2012;24(15):3101.CrossRef Song J, Shin DW, Lu YH, Amos CD, Manthiram A, Goodenough JB. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x=0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem Mater. 2012;24(15):3101.CrossRef
[41]
Zurück zum Zitat Tang ZK, Xue YF, Teobaldi G, Liu LM. The oxygen vacancy in Li-ion battery cathode materials. Nanoscale Horiz. 2020;5(11):1453.CrossRef Tang ZK, Xue YF, Teobaldi G, Liu LM. The oxygen vacancy in Li-ion battery cathode materials. Nanoscale Horiz. 2020;5(11):1453.CrossRef
[42]
Zurück zum Zitat Chen B, Ben LB, Chen YY, Yu HL, Zhang H, Zhao WW, Huang XJ. Understanding the formation of the truncated morphology of high-voltage spinel LiNi0.5Mn1.5O4 via direct atomic-level structural observations. Chem Mater. 2018;30(6):2174.CrossRef Chen B, Ben LB, Chen YY, Yu HL, Zhang H, Zhao WW, Huang XJ. Understanding the formation of the truncated morphology of high-voltage spinel LiNi0.5Mn1.5O4 via direct atomic-level structural observations. Chem Mater. 2018;30(6):2174.CrossRef
[43]
Zurück zum Zitat Wei LY, Tao JM, Yang YM, Fan XY, Ran XX, Li JX, Lin YB, Huang ZG. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries. Chem Eng J. 2020;384:123268.CrossRef Wei LY, Tao JM, Yang YM, Fan XY, Ran XX, Li JX, Lin YB, Huang ZG. Surface sulfidization of spinel LiNi0.5Mn1.5O4 cathode material for enhanced electrochemical performance in lithium-ion batteries. Chem Eng J. 2020;384:123268.CrossRef
[44]
Zurück zum Zitat Kim JH, Pieczonka NPW, Li ZC, Wu Y, Harris S, Powell BR. Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4 /graphite Li-ion batteries. Electrochim Acta. 2013;90:556.CrossRef Kim JH, Pieczonka NPW, Li ZC, Wu Y, Harris S, Powell BR. Understanding the capacity fading mechanism in LiNi0.5Mn1.5O4 /graphite Li-ion batteries. Electrochim Acta. 2013;90:556.CrossRef
[45]
Zurück zum Zitat Niu SJ, Xu JM, Wu K, Liang CD, Zhu GB, Qu QT, Zheng HH. Different mechanical and electrochemical behavior between the two major Ni-rich cathode materials in Li-ion batteries. Mater Chem Phys. 2021;260:124046.CrossRef Niu SJ, Xu JM, Wu K, Liang CD, Zhu GB, Qu QT, Zheng HH. Different mechanical and electrochemical behavior between the two major Ni-rich cathode materials in Li-ion batteries. Mater Chem Phys. 2021;260:124046.CrossRef
[46]
Zurück zum Zitat Tan CL, Cui LS, Li Y, Qin XJ, Li Y, Pan QC, Zheng FH, Wang HQ, Li QY. Stabilized cathode interphase for enhancing electrochemical performance of LiNi0.5Mn1.5O4 of-based lithium-ion battery via cis-1,2,3,6-tetrahydrophthalic anhydride. ACS Appl Mater Interfaces. 2021;13(15):18314.CrossRef Tan CL, Cui LS, Li Y, Qin XJ, Li Y, Pan QC, Zheng FH, Wang HQ, Li QY. Stabilized cathode interphase for enhancing electrochemical performance of LiNi0.5Mn1.5O4 of-based lithium-ion battery via cis-1,2,3,6-tetrahydrophthalic anhydride. ACS Appl Mater Interfaces. 2021;13(15):18314.CrossRef
[47]
Zurück zum Zitat Yin CJ, Zhou HM, Yang ZH, Li J. Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces. 2018;10(16):13625.CrossRef Yin CJ, Zhou HM, Yang ZH, Li J. Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl Mater Interfaces. 2018;10(16):13625.CrossRef
[48]
Zurück zum Zitat Li WW, Zhang XJ, Si JJ, Yang J, Sun XY. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met. 2021;40(7):1719.CrossRef Li WW, Zhang XJ, Si JJ, Yang J, Sun XY. TiO2-coated LiNi0.9Co0.08Al0.02O2 cathode materials with enhanced cycle performance for Li-ion batteries. Rare Met. 2021;40(7):1719.CrossRef
[49]
Zurück zum Zitat Zong B, Lang YQ, Yan SH, Deng ZY, Gong JJ, Guo JL, Wang L, Liang GC. Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Mater Today Commun. 2020;24:101003.CrossRef Zong B, Lang YQ, Yan SH, Deng ZY, Gong JJ, Guo JL, Wang L, Liang GC. Influence of Ti doping on microstructure and electrochemical performance of LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries. Mater Today Commun. 2020;24:101003.CrossRef
[50]
Zurück zum Zitat Liu Y, Harlow J, Dahn J. Microstructural observations of “single crystal” positive electrode materials before and after long term cycling by cross-section scanning electron microscopy. J Electrochem Soc. 2020;167(2):020512.CrossRef Liu Y, Harlow J, Dahn J. Microstructural observations of “single crystal” positive electrode materials before and after long term cycling by cross-section scanning electron microscopy. J Electrochem Soc. 2020;167(2):020512.CrossRef
[51]
Zurück zum Zitat Jung K, Yim T. Calcium-and sulfate-functionalized artificial cathode-electrolyte interphases of Ni-rich cathode materials. Rare Met. 2021;40(10):2793.CrossRef Jung K, Yim T. Calcium-and sulfate-functionalized artificial cathode-electrolyte interphases of Ni-rich cathode materials. Rare Met. 2021;40(10):2793.CrossRef
[52]
Zurück zum Zitat Li L, Zhao R, Pan D, Yi SH, Gao LF, He GJ, Zhao HL, Yu CY, Bai Y. Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. J Power Sour. 2020;450:227677.CrossRef Li L, Zhao R, Pan D, Yi SH, Gao LF, He GJ, Zhao HL, Yu CY, Bai Y. Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor. J Power Sour. 2020;450:227677.CrossRef
Metadaten
Titel
Submicron single-crystalline LiNi0.5Mn1.5O4 cathode with modulated Mn3+ content enabling high capacity and fast lithium-ion kinetics
verfasst von
Zhao Fang
Xing-Liang Zhang
Xue-Yang Hou
Wen-Long Huang
Lin-Bo Li
Publikationsdatum
15.03.2022
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 7/2022
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01942-7

Weitere Artikel der Ausgabe 7/2022

Rare Metals 7/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.