Skip to main content

2021 | OriginalPaper | Buchkapitel

7. Summary and Outlook

verfasst von : Daniel Werdehausen

Erschienen in: Nanocomposites as Next-Generation Optical Materials

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Throughout this book, I have investigated the fundamental properties of optical nanocomposites and their potential as next-generation optical materials. To summarize how my findings bridge different gaps between fundamental research and practice, I, in this chapter, address each of the four main questions that I set out to answer in the introduction. In addition, also provide my perspective on how the challenges that will inevitably arise when the concepts I developed in this book are brought closer to commercialization can be overcome. Finally, I summarize some promising directions for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.I. Mercado, Small form factor telephoto camera. Patent US2015/0116569 (2015) R.I. Mercado, Small form factor telephoto camera. Patent US2015/0116569 (2015)
2.
Zurück zum Zitat P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef P. Tao, Y. Li, A. Rungta, A. Viswanath, J. Gao, B.C. Benicewicz, R.W. Siegel, L.S. Schadler, TiO2 nanocomposites with high refractive index and transparency. J. Mater. Chem. 21(46), 18623–18629 (2011)CrossRef
3.
Zurück zum Zitat X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019) X.G. Santiago, M. Hammerschmidt, S. Burger, C. Rockstuhl, I. Fernandez-Corbaton, L. Zschiedrich, Decomposition of scattered electromagnetic fields into vector spherical wave functions on surfaces with general shapes. Phys. Rev. B 99(4), 045406 (2019)
4.
Zurück zum Zitat D. Theobald, A. Egel, G. Gomard, U. Lemmer, Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017) D. Theobald, A. Egel, G. Gomard, U. Lemmer, Plane-wave coupling formalism for T-matrix simulations of light scattering by nonspherical particles. Phys. Rev. B 96(3), 033822 (2017)
5.
Zurück zum Zitat M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef M.I. Mishchenko, L. Liu, D.W. Mackowski, B. Cairns, G. Videen, Multiple scattering by random particulate media: exact 3D results. Opt. Exp. 15(6), 2822–2836 (2007)CrossRef
6.
Zurück zum Zitat M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)CrossRef M.I. Mishchenko, L.D. Travis, A. Macke, Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35(24), 4927–4940 (1996)CrossRef
7.
Zurück zum Zitat E.A. Muljarov, T. Weiss, Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials. Opt. Lett. 43(9), 1978 (2018) E.A. Muljarov, T. Weiss, Resonant-state expansion for open optical systems: generalization to magnetic, chiral, and bi-anisotropic materials. Opt. Lett. 43(9), 1978 (2018)
8.
Zurück zum Zitat T. Weiss, E.A. Muljarov, How to calculate the pole expansion of the optical scattering matrix from the resonant states. Phys. Rev. B 98(8) (2018) T. Weiss, E.A. Muljarov, How to calculate the pole expansion of the optical scattering matrix from the resonant states. Phys. Rev. B 98(8) (2018)
9.
Zurück zum Zitat R.M. Ziff, S. Torquato, Percolation of disordered jammed sphere packings. J. Phys. A: Math. Theor. 50(8), 085001 (2017) R.M. Ziff, S. Torquato, Percolation of disordered jammed sphere packings. J. Phys. A: Math. Theor. 50(8), 085001 (2017)
10.
Zurück zum Zitat S. Torquato, Perspective: Basic understanding of condensed phases of matter via packing models. J. Chem. Phys. 149(2), 020901 (2018) S. Torquato, Perspective: Basic understanding of condensed phases of matter via packing models. J. Chem. Phys. 149(2), 020901 (2018)
11.
Zurück zum Zitat S. Atkinson, F.H. Stillinger, S. Torquato, Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Proc. Natl. Acad. Sci. U. S. A. 111(52), 18436 (2014) S. Atkinson, F.H. Stillinger, S. Torquato, Existence of isostatic, maximally random jammed monodisperse hard-disk packings. Proc. Natl. Acad. Sci. U. S. A. 111(52), 18436 (2014)
12.
Zurück zum Zitat L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef L. Pattelli, A. Egel, U. Lemmer, D.S. Wiersma, Role of packing density and spatial correlations in strongly scattering 3D systems. Optica 5(9), 1037–1045 (2018)CrossRef
13.
Zurück zum Zitat M.A. Klatt, S. Torquato, Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions. Phys. Rev. E 97(1), 012118 (2018) M.A. Klatt, S. Torquato, Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions. Phys. Rev. E 97(1), 012118 (2018)
14.
Zurück zum Zitat S. Torquato, F.H. Stillinger, Controlling the short-range order and packing densities of many-particle systems. J. Phys. Chem. B 106(33), 8354–8359 (2002)CrossRef S. Torquato, F.H. Stillinger, Controlling the short-range order and packing densities of many-particle systems. J. Phys. Chem. B 106(33), 8354–8359 (2002)CrossRef
15.
Zurück zum Zitat M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commu. 6, 10102 (2015) M.V. Rybin, D.S. Filonov, K.B. Samusev, P.A. Belov, Y.S. Kivshar, M.F. Limonov, Phase diagram for the transition from photonic crystals to dielectric metamaterials. Nat. Commu. 6, 10102 (2015)
16.
Zurück zum Zitat M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, M. Segev, Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106(19), 193904 (2011) M. Rechtsman, A. Szameit, F. Dreisow, M. Heinrich, R. Keil, S. Nolte, M. Segev, Amorphous photonic lattices: band gaps, effective mass, and suppressed transport. Phys. Rev. Lett. 106(19), 193904 (2011)
17.
Zurück zum Zitat L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, J. Zi, Amorphous photonic crystals with only short-range order. Adv. Mater. 25(37), 5314–5320 (2013)CrossRef L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, J. Zi, Amorphous photonic crystals with only short-range order. Adv. Mater. 25(37), 5314–5320 (2013)CrossRef
18.
Zurück zum Zitat S. Chandra, S.H. Pathan, S. Mitra, B.H. Modha, A. Goswami, P. Pramanik, Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2(9), 3602–3606 (2012)CrossRef S. Chandra, S.H. Pathan, S. Mitra, B.H. Modha, A. Goswami, P. Pramanik, Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv. 2(9), 3602–3606 (2012)CrossRef
19.
Zurück zum Zitat J.M. Garcia, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff, Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 72(24), 3172–3174 (2020)CrossRef J.M. Garcia, T. Mankad, P.O. Holtz, P.J. Wellman, P.M. Petroff, Electronic states tuning of InAs self-assembled quantum dots. Appl. Phys. Lett. 72(24), 3172–3174 (2020)CrossRef
20.
Zurück zum Zitat P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157-D176 (2010) P. Hartmann, R. Jedamzik, S. Reichel, B. Schreder, Optical glass and glass ceramic historical aspects and recent developments: a Schott view. Appl. Opt. 49(16), D157-D176 (2010)
21.
Zurück zum Zitat J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)CrossRef J.-G. Liu, M. Ueda, High refractive index polymers: fundamental research and practical applications. J. Mater. Chem. 19(47), 8907–8919 (2009)CrossRef
22.
Zurück zum Zitat M. Feuillade, G. Cantagrel, Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015) M. Feuillade, G. Cantagrel, Liquid polymerizable composition comprising mineral nanoparticles and its use to manufacture an optical article. Patent US20150203710 (2015)
23.
Zurück zum Zitat S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010) S. Li, M. Meng Lin, M.S. Toprak, D.K. Kim, M. Muhammed, Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 1(1), 5214 (2010)
24.
Zurück zum Zitat H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402 H.K. Schmidt, Sol-gel nanocomposites as functional optical materials, in Sol-Gel Optics II, ed. by J.D. Mackenzie, vol. 1758 (International Society for Optics and Photonics. SPIE, 1992), pp. 396–402
25.
Zurück zum Zitat N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978) N. Nakashima, High refractive index glass compositions. Patent US4082427 (1978)
26.
Zurück zum Zitat S. Monickam, D. Peters, G. Cooper, Z. Chen, Nanocomposite formulations for optical applications. Patent US20180223107 (2018) S. Monickam, D. Peters, G. Cooper, Z. Chen, Nanocomposite formulations for optical applications. Patent US20180223107 (2018)
27.
Zurück zum Zitat J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef J.L.H. Chau, Y.-M. Lin, A.-K. Li, W.-F. Su, K.-S. Chang, S.L.-C. Hsu, T.-L. Li, Transparent high refractive index nanocomposite thin films. Mater. Lett. 61(14–15), 2908–2910 (2007)CrossRef
28.
Zurück zum Zitat P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012)CrossRef P.T. Chung, C.T. Yang, S.H. Wang, C.W. Chen, A.S. Chiang, C.-Y. Liu, ZrO2/epoxy nanocomposite for LED encapsulation. Mater. Chem. Phys. 136(2–3), 868–876 (2012)CrossRef
29.
Zurück zum Zitat S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef S. Lee, H.-J. Shin, S.-M. Yoon, D.K. Yi, J.-Y. Choi, U. Paik, Refractive index engineering of transparent ZrO2-polydimethylsiloxane nanocomposites. J. Mater. Chem. 18(15), 1751–1755 (2008)CrossRef
30.
Zurück zum Zitat H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)CrossRef H. Liu, X. Zeng, X. Kong, S. Bian, J. Chen, A simple two-step method to fabricate highly transparent ITO/polymer nanocomposite films. Appl. Surface Sci. 258(22), 8564–8569 (2012)CrossRef
31.
Zurück zum Zitat C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef C. Lü, Z. Cui, Z. Li, B. Yang, J. Shen, High refractive index thin films of ZnS/polythiourethane nanocomposites. J. Mater. Chem. 13(3), 526–530 (2003)CrossRef
32.
Zurück zum Zitat C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef C. Lü, Z. Cui, Y. Wang, Z. Li, C. Guan, B. Yang, J. Shen, Preparation and characterization of ZnS-polymer nanocomposite films with high refractive index. J. Mater. Chem. 13(9), 2189–2195 (2003)CrossRef
33.
Zurück zum Zitat C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef C. Lü, C. Guan, Y. Liu, Y. Cheng, B. Yang, PbS/polymer nanocomposite optical materials with high refractive index. Chem. Mater. 17(9), 2448–2454 (2005)CrossRef
34.
Zurück zum Zitat C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef C. Lü, B. Yang, High refractive index organic-inorganic nanocomposites: design, synthesis and application. J. Mater. Chem. 19(19), 2884–2901 (2009)CrossRef
35.
Zurück zum Zitat G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. (2018) G. Cooper, W. Xu, Z. Chen, High refractive index nanocomposite layer. Patent US10144842. (2018)
36.
Zurück zum Zitat A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao, Optical polymer nanocomposites. Patent US20030175004 (2003) A. Garito, Y.-L. Hsiao, R. Gao, J. Zhu, B. Thomas, A. Panackal, J. Sharma, R. Gao, Optical polymer nanocomposites. Patent US20030175004 (2003)
37.
Zurück zum Zitat T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012)CrossRef T. Ogata, R. Yagi, N. Nakamura, Y. Kuwahara, S. Kurihara, Modulation of polymer refractive indices with diamond nanoparticles for metal-free multilayer film mirrors. ACS Appl. Mater. Interfaces 4(8), 3769–72 (2012)CrossRef
38.
Zurück zum Zitat I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecularensembles. Chem. Phys. Chem 21, 878 (2020) I. Fernandez-Corbaton, D. Beutel, C. Rockstuhl, A. Pausch, W. Klopper, Computation of electromagnetic properties of molecularensembles. Chem. Phys. Chem 21, 878 (2020)
Metadaten
Titel
Summary and Outlook
verfasst von
Daniel Werdehausen
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-75684-0_7

Neuer Inhalt