Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2018

29.06.2018

Superhydrophobic Surface of AZ31 Alloy Fabricated by Chemical Treatment in the NiSO4 Solution

verfasst von: M. Yeganeh, M. Omidi, M. Eskandari

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, the formation of superhydrophobic (SHP) structure on the surface of Mg alloy was investigated by immersion in the CuCl2 and NiSO4 solutions following by soaking in the stearic acid (SA) solution. The results revealed the presence of some stearic acid bonds on the surface of Mg alloy. The contact angle of the surface after the process measured about 151.5°, which could be due to the presence of flake-like morphology and the adsorption of hydrophobic substances of SA. X-ray diffraction pattern showed the presence of NiO as the resistant phase against the diffusion of species. Besides, the values of noise and corrosion resistance regarding SHP Mg were at least three orders of magnitude higher than that of bare Mg alloy due to the formation of SHP structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17, p 400–453CrossRef A. Atrens, G.L. Song, M. Liu, Z.M. Shi, F.Y. Cao, and M.S. Dargusch, Review of Recent Developments in the Field of Magnesium Corrosion, Adv. Eng. Mater., 2015, 17, p 400–453CrossRef
2.
Zurück zum Zitat Z. Kang and W. Li, Facile and Fast Fabrication of Superhydrophobic Surface on Magnesium Alloy by One-Step Electrodeposition Method, J. Ind. Eng. Chem., 2017, 50, p 50–56CrossRef Z. Kang and W. Li, Facile and Fast Fabrication of Superhydrophobic Surface on Magnesium Alloy by One-Step Electrodeposition Method, J. Ind. Eng. Chem., 2017, 50, p 50–56CrossRef
3.
Zurück zum Zitat M. La, H. Zhou, N. Li, Y. Xin, R. Sha, S. Bao, and P. Jin, Improved Performance of Mg-Y Alloy Thin Film Switchable Mirrors After Coating with a Superhydrophobic Surface, Appl. Surf. Sci., 2017, 403, p 23–28CrossRef M. La, H. Zhou, N. Li, Y. Xin, R. Sha, S. Bao, and P. Jin, Improved Performance of Mg-Y Alloy Thin Film Switchable Mirrors After Coating with a Superhydrophobic Surface, Appl. Surf. Sci., 2017, 403, p 23–28CrossRef
4.
Zurück zum Zitat G. Song, A. Atrens, G. Song, and A. Atrens, Recent Insights into the Mechanism of Magnesium Corrosion and Research Suggestions, Adv. Eng. Mater., 2007, 9, p 177–183CrossRef G. Song, A. Atrens, G. Song, and A. Atrens, Recent Insights into the Mechanism of Magnesium Corrosion and Research Suggestions, Adv. Eng. Mater., 2007, 9, p 177–183CrossRef
5.
Zurück zum Zitat X.B. Chen, N. Birbilis, and T.B. Abbott, Effect of [Ca2+] and [PO4 3−] Levels on the Formation of Calcium Phosphate Conversion Coatings on Die-Cast Magnesium Alloy AZ91D, Corros. Sci., 2012, 55, p 226–232CrossRef X.B. Chen, N. Birbilis, and T.B. Abbott, Effect of [Ca2+] and [PO4 3−] Levels on the Formation of Calcium Phosphate Conversion Coatings on Die-Cast Magnesium Alloy AZ91D, Corros. Sci., 2012, 55, p 226–232CrossRef
6.
Zurück zum Zitat R. Udhayan and D.P. Bhatt, On the Corrosion Behavior of Magnesium and Its Alloys Using Electrochemical Techniques, J. Power Sources, 1996, 53, p 103–107CrossRef R. Udhayan and D.P. Bhatt, On the Corrosion Behavior of Magnesium and Its Alloys Using Electrochemical Techniques, J. Power Sources, 1996, 53, p 103–107CrossRef
7.
Zurück zum Zitat Z. Wang, Q. Li, Z. She, F. Chen, L. Li, X. Zhang, and P. Zhang, Facile and Fast Fabrication of Superhydrophobic Surface on Magnesium Alloy, Appl. Surf. Sci., 2013, 271, p 182–192CrossRef Z. Wang, Q. Li, Z. She, F. Chen, L. Li, X. Zhang, and P. Zhang, Facile and Fast Fabrication of Superhydrophobic Surface on Magnesium Alloy, Appl. Surf. Sci., 2013, 271, p 182–192CrossRef
8.
Zurück zum Zitat J. Senf and E. Broszeit, Wear and Corrosion Protection of Aluminum and Magnesium Alloys Using Chromium and Chromium Nitride PVD Coatings, Adv. Eng. Mater., 1999, 1, p 133–137CrossRef J. Senf and E. Broszeit, Wear and Corrosion Protection of Aluminum and Magnesium Alloys Using Chromium and Chromium Nitride PVD Coatings, Adv. Eng. Mater., 1999, 1, p 133–137CrossRef
9.
Zurück zum Zitat G. Wu, X. Zeng, and G. Yuan, Growth and Corrosion of Aluminum PVD-Coating on AZ31 Magnesium Alloy, Mater. Lett., 2008, 62, p 4325–4327CrossRef G. Wu, X. Zeng, and G. Yuan, Growth and Corrosion of Aluminum PVD-Coating on AZ31 Magnesium Alloy, Mater. Lett., 2008, 62, p 4325–4327CrossRef
10.
Zurück zum Zitat Z.C. Wang, F. Jia, L. Yu, Z.B. Qi, Y. Tang, and G.-L. Song, Direct Electroless Nickel–Boron Plating on AZ91D Magnesium Alloy, Surf. Coat. Technol., 2012, 206, p 3676–3685CrossRef Z.C. Wang, F. Jia, L. Yu, Z.B. Qi, Y. Tang, and G.-L. Song, Direct Electroless Nickel–Boron Plating on AZ91D Magnesium Alloy, Surf. Coat. Technol., 2012, 206, p 3676–3685CrossRef
11.
Zurück zum Zitat D. Seifzadeh and Z. Rajabalizadeh, Environmentally-Friendly Method for Electroless Ni-P Plating on Magnesium Alloy, Surf. Coat. Technol., 2013, 218, p 119–126CrossRef D. Seifzadeh and Z. Rajabalizadeh, Environmentally-Friendly Method for Electroless Ni-P Plating on Magnesium Alloy, Surf. Coat. Technol., 2013, 218, p 119–126CrossRef
12.
Zurück zum Zitat E. Georgiza, J. Novakovic, and P. Vassiliou, Characterization and Corrosion Resistance of Duplex Electroless Ni-P Composite Coatings on Magnesium Alloy, Surf. Coat. Technol., 2013, 232, p 432–439CrossRef E. Georgiza, J. Novakovic, and P. Vassiliou, Characterization and Corrosion Resistance of Duplex Electroless Ni-P Composite Coatings on Magnesium Alloy, Surf. Coat. Technol., 2013, 232, p 432–439CrossRef
13.
Zurück zum Zitat J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Comparison of Electrochemical Corrosion Behaviour of MgO and ZrO2 Coatings on AM50 Magnesium Alloy Formed by Plasma Electrolytic Oxidation, Corros. Sci., 2009, 51, p 2483–2492CrossRef J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Comparison of Electrochemical Corrosion Behaviour of MgO and ZrO2 Coatings on AM50 Magnesium Alloy Formed by Plasma Electrolytic Oxidation, Corros. Sci., 2009, 51, p 2483–2492CrossRef
14.
Zurück zum Zitat P.B. Srinivasan, J. Liang, C. Blawert, M. Störmer, and W. Dietzel, Effect of Current Density on the Microstructure And Corrosion Behaviour of Plasma Electrolytic Oxidation Treated AM50 Magnesium Alloy, Appl. Surf. Sci., 2009, 225, p 4212–4218CrossRef P.B. Srinivasan, J. Liang, C. Blawert, M. Störmer, and W. Dietzel, Effect of Current Density on the Microstructure And Corrosion Behaviour of Plasma Electrolytic Oxidation Treated AM50 Magnesium Alloy, Appl. Surf. Sci., 2009, 225, p 4212–4218CrossRef
15.
Zurück zum Zitat Z. Yao, Y. Xu, Y. Liu, D. Wang, Z. Jiang, and F. Wang, Structure and Corrosion Resistance of ZrO2 Ceramic Coatings on AZ91D Mg Alloys by Plasma Electrolytic Oxidation, J. Alloys Compd., 2011, 509, p 8469–8474CrossRef Z. Yao, Y. Xu, Y. Liu, D. Wang, Z. Jiang, and F. Wang, Structure and Corrosion Resistance of ZrO2 Ceramic Coatings on AZ91D Mg Alloys by Plasma Electrolytic Oxidation, J. Alloys Compd., 2011, 509, p 8469–8474CrossRef
16.
Zurück zum Zitat Y. Chen, B.L. Luan, G.-L. Song, Q. Yang, D.M. Kingston, and F. Benseba, An Investigation of New Barium Phosphate Chemical Conversion Coating on AZ31 Magnesium Alloy, Surf. Coat. Technol., 2012, 210, p 156–165CrossRef Y. Chen, B.L. Luan, G.-L. Song, Q. Yang, D.M. Kingston, and F. Benseba, An Investigation of New Barium Phosphate Chemical Conversion Coating on AZ31 Magnesium Alloy, Surf. Coat. Technol., 2012, 210, p 156–165CrossRef
17.
Zurück zum Zitat G. Wang, M. Zhang, and R. Wu, Molybdate and Molybdate/Permanganate Conversion Coatings on Mg-8.5 Li Alloy, Appl. Surf. Sci., 2012, 258, p 2648–2654CrossRef G. Wang, M. Zhang, and R. Wu, Molybdate and Molybdate/Permanganate Conversion Coatings on Mg-8.5 Li Alloy, Appl. Surf. Sci., 2012, 258, p 2648–2654CrossRef
18.
Zurück zum Zitat X. Wang, L. Zhu, X. He, and F. Sun, Effect of Cerium Additive on Aluminum-Based Chemical Conversion Coating on AZ91D Magnesium Alloy, Appl. Surf. Sci., 2013, 280, p 467–473CrossRef X. Wang, L. Zhu, X. He, and F. Sun, Effect of Cerium Additive on Aluminum-Based Chemical Conversion Coating on AZ91D Magnesium Alloy, Appl. Surf. Sci., 2013, 280, p 467–473CrossRef
19.
Zurück zum Zitat T. Masanari and S. Hiromoto, Growth Mechanism of Hydroxyapatite-Coatings Formed on Pure Magnesium and Corrosion Behavior of the Coated Magnesium, Appl. Surf. Sci., 2011, 257, p 8253–8257CrossRef T. Masanari and S. Hiromoto, Growth Mechanism of Hydroxyapatite-Coatings Formed on Pure Magnesium and Corrosion Behavior of the Coated Magnesium, Appl. Surf. Sci., 2011, 257, p 8253–8257CrossRef
20.
Zurück zum Zitat R. Rojaee, M. Fathi, and K. Raeissi, Electrophoretic Deposition of Nanostructured Hydroxyapatite Coating on AZ91 Magnesium Alloy Implants with Different Surface Treatments, Appl. Surf. Sci., 2013, 258, p 664–673CrossRef R. Rojaee, M. Fathi, and K. Raeissi, Electrophoretic Deposition of Nanostructured Hydroxyapatite Coating on AZ91 Magnesium Alloy Implants with Different Surface Treatments, Appl. Surf. Sci., 2013, 258, p 664–673CrossRef
21.
Zurück zum Zitat S. Sonmez, B. Aksakal, and B. Dikici, Influence of Hydroxyapatite Coating Thickness and Powder Particle Size on Corrosion Performance of MA8M Magnesium Alloy, J. Alloys Compd., 2014, 456, p 125–131CrossRef S. Sonmez, B. Aksakal, and B. Dikici, Influence of Hydroxyapatite Coating Thickness and Powder Particle Size on Corrosion Performance of MA8M Magnesium Alloy, J. Alloys Compd., 2014, 456, p 125–131CrossRef
22.
Zurück zum Zitat R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, Recent Progress in Corrosion Protection of Magnesium Alloys by Organic Coatings, Prog. Org. Coat., 2012, 73, p 129–141CrossRef R.-G. Hu, S. Zhang, J.-F. Bu, C.-J. Lin, and G.-L. Song, Recent Progress in Corrosion Protection of Magnesium Alloys by Organic Coatings, Prog. Org. Coat., 2012, 73, p 129–141CrossRef
23.
Zurück zum Zitat L. Xu and A. Yamamoto, In vitro Degradation of Biodegradable Polymer-Coated Magnesium Under Cell Culture Condition, Appl. Surf. Sci., 2012, 258, p 6353–6358CrossRef L. Xu and A. Yamamoto, In vitro Degradation of Biodegradable Polymer-Coated Magnesium Under Cell Culture Condition, Appl. Surf. Sci., 2012, 258, p 6353–6358CrossRef
24.
Zurück zum Zitat M. Yeganeh and M. Saremi, Corrosion Inhibition of Magnesium Using Biocompatible Alkyd Coatings Incorporated by Mesoporous Silica Nanocontainers, Prog. Org. Coat., 2015, 79, p 25–30CrossRef M. Yeganeh and M. Saremi, Corrosion Inhibition of Magnesium Using Biocompatible Alkyd Coatings Incorporated by Mesoporous Silica Nanocontainers, Prog. Org. Coat., 2015, 79, p 25–30CrossRef
25.
Zurück zum Zitat X. Zhang, G. Wu, X. Peng, L. Li, H. Feng, B. Gao, K. Huo, and P.K. Chu, Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion, Sci. Rep., 2015, 5, p 1–11 X. Zhang, G. Wu, X. Peng, L. Li, H. Feng, B. Gao, K. Huo, and P.K. Chu, Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion, Sci. Rep., 2015, 5, p 1–11
26.
Zurück zum Zitat P.R. Cha, H.S. Han, G.F. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, and H.K. Seok, Biodegradability Engineering of Biodegradable Mg Alloys: Tailoring the Electrochemical Properties and Microstructure Of Constituent Phases, Sci. Rep., 2013, 3, p 2367–2372CrossRef P.R. Cha, H.S. Han, G.F. Yang, Y.C. Kim, K.H. Hong, S.C. Lee, J.Y. Jung, J.P. Ahn, Y.Y. Kim, S.Y. Cho, J.Y. Byun, K.S. Lee, S.J. Yang, and H.K. Seok, Biodegradability Engineering of Biodegradable Mg Alloys: Tailoring the Electrochemical Properties and Microstructure Of Constituent Phases, Sci. Rep., 2013, 3, p 2367–2372CrossRef
27.
Zurück zum Zitat M. Nosonovsky and B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces, Springer, Berlin, 2008CrossRef M. Nosonovsky and B. Bhushan, Multiscale Dissipative Mechanisms and Hierarchical Surfaces, Springer, Berlin, 2008CrossRef
28.
Zurück zum Zitat Z. Guo, W. Liu, and B.-L. Su, Superhydrophobic Surfaces: From Natural to Biomimetic to Functional, J. Colloid Interface Sci., 2011, 353, p 335–355CrossRef Z. Guo, W. Liu, and B.-L. Su, Superhydrophobic Surfaces: From Natural to Biomimetic to Functional, J. Colloid Interface Sci., 2011, 353, p 335–355CrossRef
29.
Zurück zum Zitat M. Yeganeh and N. Mohammadi, Superhydrophobic Surface of Mg Alloys: A Review, J. Magn. Alloys, 2018, 6(1), p 59–70CrossRef M. Yeganeh and N. Mohammadi, Superhydrophobic Surface of Mg Alloys: A Review, J. Magn. Alloys, 2018, 6(1), p 59–70CrossRef
30.
Zurück zum Zitat Y. Liu, J.D. Liu, S.Y. Li, J.A. Liu, Z.W. Han, and L.Q. Ren, Biomimetic Superhydrophobic Surface of High Adhesion Fabricated with Micronano Binary Structure on Aluminum Alloy, ACS Appl. Mater. Interface, 2013, 5, p 8907–8914CrossRef Y. Liu, J.D. Liu, S.Y. Li, J.A. Liu, Z.W. Han, and L.Q. Ren, Biomimetic Superhydrophobic Surface of High Adhesion Fabricated with Micronano Binary Structure on Aluminum Alloy, ACS Appl. Mater. Interface, 2013, 5, p 8907–8914CrossRef
31.
Zurück zum Zitat F. Zhang, C. Zhang, L. Song, R. Zeng, S. Li, and H. Cui, Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance, J. Mater. Sci. Technol., 2015, 31, p 1139–1143CrossRef F. Zhang, C. Zhang, L. Song, R. Zeng, S. Li, and H. Cui, Fabrication of the Superhydrophobic Surface on Magnesium Alloy and Its Corrosion Resistance, J. Mater. Sci. Technol., 2015, 31, p 1139–1143CrossRef
32.
Zurück zum Zitat L. Feng, Y. Zhu, W. Fan, Y. Wang, X. Qiang, and Y. Liu, Fabrication and Corrosion Resistance of Superhydrophobic Magnesium Alloy, Appl. Phys. A, 2015, 120, p 561–570CrossRef L. Feng, Y. Zhu, W. Fan, Y. Wang, X. Qiang, and Y. Liu, Fabrication and Corrosion Resistance of Superhydrophobic Magnesium Alloy, Appl. Phys. A, 2015, 120, p 561–570CrossRef
33.
Zurück zum Zitat T. Ishizaki and N. Saito, Rapid Formation of a Superhydrophobic Surface on a Magnesium Alloy Coated with a Cerium Oxide Film by a Simple Immersion Process at Room Temperature and Its Chemical Stability, Langmuir, 2010, 26, p 9749–9755CrossRef T. Ishizaki and N. Saito, Rapid Formation of a Superhydrophobic Surface on a Magnesium Alloy Coated with a Cerium Oxide Film by a Simple Immersion Process at Room Temperature and Its Chemical Stability, Langmuir, 2010, 26, p 9749–9755CrossRef
34.
Zurück zum Zitat Y. Liu, X. Yin, J. Zhang, S. Yu, Z. Hana, and L. Ren, A Electro-Deposition Process for Fabrication of Biomimetic Super-Hydrophobic Surface and Its Corrosion Resistance on Magnesium Alloy, Electrochim. Acta, 2014, 125, p 395–403CrossRef Y. Liu, X. Yin, J. Zhang, S. Yu, Z. Hana, and L. Ren, A Electro-Deposition Process for Fabrication of Biomimetic Super-Hydrophobic Surface and Its Corrosion Resistance on Magnesium Alloy, Electrochim. Acta, 2014, 125, p 395–403CrossRef
35.
Zurück zum Zitat Y. Liu, J.Z. Xue, D. Luo, H.Y. Wang, X. Gong, Z.W. Han, and L.Q. Ren, One-Step Fabrication of Biomimetic Superhydrophobic Surface by Electrodeposition on Magnesium Alloy and Its Corrosion Inhibition, J. Colloid Interface Sci., 2017, 491, p 313–320CrossRef Y. Liu, J.Z. Xue, D. Luo, H.Y. Wang, X. Gong, Z.W. Han, and L.Q. Ren, One-Step Fabrication of Biomimetic Superhydrophobic Surface by Electrodeposition on Magnesium Alloy and Its Corrosion Inhibition, J. Colloid Interface Sci., 2017, 491, p 313–320CrossRef
36.
Zurück zum Zitat Y. Liu, G. Lu, J. Liu, Z. Han, and Z. Liu, Fabrication of Biomimetic Hydrophobic Films with Corrosion Resistance on Magnesium Alloy by Immersion Process, Appl. Surf. Sci., 2013, 264, p 527–532CrossRef Y. Liu, G. Lu, J. Liu, Z. Han, and Z. Liu, Fabrication of Biomimetic Hydrophobic Films with Corrosion Resistance on Magnesium Alloy by Immersion Process, Appl. Surf. Sci., 2013, 264, p 527–532CrossRef
37.
Zurück zum Zitat Z. Qiu, J. Sun, R. Wang, Y. Zhang, and X. Wu, Magnet-Induced Fabrication of a Superhydrophobic Surface on ZK60 Magnesium Alloy, Surf. Coat. Technol., 2016, 286, p 246–250CrossRef Z. Qiu, J. Sun, R. Wang, Y. Zhang, and X. Wu, Magnet-Induced Fabrication of a Superhydrophobic Surface on ZK60 Magnesium Alloy, Surf. Coat. Technol., 2016, 286, p 246–250CrossRef
38.
Zurück zum Zitat S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, and L.B. Boinovich, Formation and Electrochemical Properties of the Superhydrophobic Nanocomposite Coating on PEO Pretreated Mg-Mn-Ce Magnesium Alloy, Surf. Coat. Technol., 2013, 232, p 240–246CrossRef S.V. Gnedenkov, V.S. Egorkin, S.L. Sinebryukhov, I.E. Vyaliy, A.S. Pashinin, A.M. Emelyanenko, and L.B. Boinovich, Formation and Electrochemical Properties of the Superhydrophobic Nanocomposite Coating on PEO Pretreated Mg-Mn-Ce Magnesium Alloy, Surf. Coat. Technol., 2013, 232, p 240–246CrossRef
39.
Zurück zum Zitat Z. Kang, X. Lai, J. Sang, and Y. Li, Fabrication of Hydrophobic/Super-Hydrophobic Nanofilms on Magnesium Alloys by Polymer Plating, Thin Solid Film, 2011, 520, p 800–806CrossRef Z. Kang, X. Lai, J. Sang, and Y. Li, Fabrication of Hydrophobic/Super-Hydrophobic Nanofilms on Magnesium Alloys by Polymer Plating, Thin Solid Film, 2011, 520, p 800–806CrossRef
40.
Zurück zum Zitat H. Wang, Y. Weia, M. Liang, L. Hou, Y. Li, and C. Guo, Fabrication of Stable and Corrosion-Resisted Super-Hydrophobic Film on Mg Alloy, Colloid Surf. A Physicochem. Eng. Asp., 2016, 509, p 351–358CrossRef H. Wang, Y. Weia, M. Liang, L. Hou, Y. Li, and C. Guo, Fabrication of Stable and Corrosion-Resisted Super-Hydrophobic Film on Mg Alloy, Colloid Surf. A Physicochem. Eng. Asp., 2016, 509, p 351–358CrossRef
41.
Zurück zum Zitat W. Xu, J. Song, J. Sun, Y. Lu, and Z. Yu, Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces, ACS Appl. Mater. Interfaces, 2011, 3, p 4404–4414CrossRef W. Xu, J. Song, J. Sun, Y. Lu, and Z. Yu, Rapid Fabrication of Large-Area, Corrosion-Resistant Superhydrophobic Mg Alloy Surfaces, ACS Appl. Mater. Interfaces, 2011, 3, p 4404–4414CrossRef
42.
Zurück zum Zitat M. Liang, Y. Wei, L. Hou, H. Wang, and C. Guo, Fabrication of a Super-Hydrophobic Surface on a Magnesium Alloy by a Simple Method, J. Alloys Compd., 2016, 656, p 311–317CrossRef M. Liang, Y. Wei, L. Hou, H. Wang, and C. Guo, Fabrication of a Super-Hydrophobic Surface on a Magnesium Alloy by a Simple Method, J. Alloys Compd., 2016, 656, p 311–317CrossRef
43.
Zurück zum Zitat A.B.D. Cassie and S. Baxter, Surface Roughness and Contact Angle, Trans. Faraday Soc., 1944, 40, p 546–551CrossRef A.B.D. Cassie and S. Baxter, Surface Roughness and Contact Angle, Trans. Faraday Soc., 1944, 40, p 546–551CrossRef
44.
Zurück zum Zitat F. Song, C. Wu, H. Chen, Q. Liu, J. Liu, R. Chen, R. Li, and J. Wang, Water-Repellent and Corrosion-Resistance Properties of Superhydrophobic and Lubricant-Infused Super Slippery Surfaces, RSC Adv., 2017, 7, p 44239–44246CrossRef F. Song, C. Wu, H. Chen, Q. Liu, J. Liu, R. Chen, R. Li, and J. Wang, Water-Repellent and Corrosion-Resistance Properties of Superhydrophobic and Lubricant-Infused Super Slippery Surfaces, RSC Adv., 2017, 7, p 44239–44246CrossRef
45.
Zurück zum Zitat H. Feng, S. Liu, Y. Du, T. Lei, and T. Yuan, Effect of the Second Phases on Corrosion Behavior of the Mg-Al-Zn Alloys, J. Alloys Compd., 2017, 695, p 2330–2338CrossRef H. Feng, S. Liu, Y. Du, T. Lei, and T. Yuan, Effect of the Second Phases on Corrosion Behavior of the Mg-Al-Zn Alloys, J. Alloys Compd., 2017, 695, p 2330–2338CrossRef
46.
Zurück zum Zitat S.-Y. Han, D.-H. Lee, Y.-J. Chang, S.-O. Ryu, T.-J. Lee, and C.-H. Chang, The Growth Mechanism of Nickel Oxide Thin Films by Room-Temperature Chemical Bath Deposition, J. Electrochem. Soc., 2006, 153, p 382–386CrossRef S.-Y. Han, D.-H. Lee, Y.-J. Chang, S.-O. Ryu, T.-J. Lee, and C.-H. Chang, The Growth Mechanism of Nickel Oxide Thin Films by Room-Temperature Chemical Bath Deposition, J. Electrochem. Soc., 2006, 153, p 382–386CrossRef
47.
Zurück zum Zitat H. Wan and X. Hu, One-Step Solve-Thermal Process for the Construction of Anticorrosion Bionic Superhydrophobic Surfaces on Magnesium Alloy, Mater. Lett., 2016, 174, p 209–212CrossRef H. Wan and X. Hu, One-Step Solve-Thermal Process for the Construction of Anticorrosion Bionic Superhydrophobic Surfaces on Magnesium Alloy, Mater. Lett., 2016, 174, p 209–212CrossRef
48.
Zurück zum Zitat W.F. Ng, M.H. Wong, and F.T. Cheng, Stearic Acid Coating on Magnesium for Enhancing Corrosion Resistance in Hanks’ Solution, Surf. Coat. Technol., 2010, 204, p 1823–1830CrossRef W.F. Ng, M.H. Wong, and F.T. Cheng, Stearic Acid Coating on Magnesium for Enhancing Corrosion Resistance in Hanks’ Solution, Surf. Coat. Technol., 2010, 204, p 1823–1830CrossRef
49.
Zurück zum Zitat C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, and J. Wang, Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance, ACS Appl. Mater. Interface, 2017, 9, p 11106–11115CrossRef C. Wu, Q. Liu, R. Chen, J. Liu, H. Zhang, R. Li, K. Takahashi, P. Liu, and J. Wang, Fabrication of ZIF-8@SiO2 Micro/Nano Hierarchical Superhydrophobic Surface on AZ31 Magnesium Alloy with Impressive Corrosion Resistance and Abrasion Resistance, ACS Appl. Mater. Interface, 2017, 9, p 11106–11115CrossRef
50.
Zurück zum Zitat M. Saremi and M. Yeganeh, Application of Mesoporous Silica Nanocontainers as Smart Host of Corrosion Inhibitor in Polypyrrole Coatings, Corros. Sci., 2014, 86, p 159–170CrossRef M. Saremi and M. Yeganeh, Application of Mesoporous Silica Nanocontainers as Smart Host of Corrosion Inhibitor in Polypyrrole Coatings, Corros. Sci., 2014, 86, p 159–170CrossRef
51.
Zurück zum Zitat A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; A Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochim. Acta., 2014, 121, p 394–406CrossRef A.D. King, N. Birbilis, and J.R. Scully, Accurate Electrochemical Measurement of Magnesium Corrosion Rates; A Combined Impedance, Mass-Loss and Hydrogen Collection Study, Electrochim. Acta., 2014, 121, p 394–406CrossRef
52.
Zurück zum Zitat M. Yeganeh, M. Eskandari, and S.R. Alavi-Zaree, A Comparison Between Corrosion Behaviors of Fine-Grained and Coarse-Grained Structures of High-Mn Steel in NaCl Solution, J. Mater. Eng. Perform., 2017, 26, p 2484–2490CrossRef M. Yeganeh, M. Eskandari, and S.R. Alavi-Zaree, A Comparison Between Corrosion Behaviors of Fine-Grained and Coarse-Grained Structures of High-Mn Steel in NaCl Solution, J. Mater. Eng. Perform., 2017, 26, p 2484–2490CrossRef
53.
Zurück zum Zitat J. Jayaraj, S.A. Raj, A. Srinivasan, S. Ananthakumar, U.T.S. Pillai, N.G.K. Dhaipule, and U.K. Mudali, Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy, Corros. Sci., 2016, 113, p 104–115CrossRef J. Jayaraj, S.A. Raj, A. Srinivasan, S. Ananthakumar, U.T.S. Pillai, N.G.K. Dhaipule, and U.K. Mudali, Composite Magnesium Phosphate Coatings for Improved Corrosion Resistance of Magnesium AZ31 Alloy, Corros. Sci., 2016, 113, p 104–115CrossRef
54.
Zurück zum Zitat A. Keyvani, M. Yeganeh, and H. Rezaeyan, Electrodeposition of Zn-Co-Mo Alloy on the Steel Substrate from Citrate Bath and Its Corrosion Behavior in the Chloride Media, J. Mater. Eng. Perform., 2017, 26, p 1958–1966CrossRef A. Keyvani, M. Yeganeh, and H. Rezaeyan, Electrodeposition of Zn-Co-Mo Alloy on the Steel Substrate from Citrate Bath and Its Corrosion Behavior in the Chloride Media, J. Mater. Eng. Perform., 2017, 26, p 1958–1966CrossRef
55.
Zurück zum Zitat A. Keyvani, M. Yeganeh, and H. Rezaeyan, Application of Mesoporous Silica Nanocontainers as an Intelligent Host of Molybdate Corrosion Inhibitor Embedded in the Epoxy Coated Steel, Prog. Nat. Sci. Mater. Int., 2017, 27, p 261–267CrossRef A. Keyvani, M. Yeganeh, and H. Rezaeyan, Application of Mesoporous Silica Nanocontainers as an Intelligent Host of Molybdate Corrosion Inhibitor Embedded in the Epoxy Coated Steel, Prog. Nat. Sci. Mater. Int., 2017, 27, p 261–267CrossRef
56.
Zurück zum Zitat R. Naderi and M.M. Attar, Effect of Zinc-Free Phosphate-Based Anticorrosion Pigment on the Cathodic Disbondment of Epoxy-Polyamide Coating, Prog. Org. Coat., 2014, 77, p 830–835CrossRef R. Naderi and M.M. Attar, Effect of Zinc-Free Phosphate-Based Anticorrosion Pigment on the Cathodic Disbondment of Epoxy-Polyamide Coating, Prog. Org. Coat., 2014, 77, p 830–835CrossRef
57.
Zurück zum Zitat B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S.Y. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279CrossRef B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, and S.Y. Arman, Electrochemical Impedance Spectroscopy and Electrochemical Noise Measurements as Tools to Evaluate Corrosion Inhibition of Azole Compounds on Stainless Steel in Acidic Media, Corros. Sci., 2013, 75, p 269–279CrossRef
58.
Zurück zum Zitat T. Ishizaki, Y. Masuda, and M. Sakamoto, Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution, Langmuir, 2011, 27, p 4780–4788CrossRef T. Ishizaki, Y. Masuda, and M. Sakamoto, Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution, Langmuir, 2011, 27, p 4780–4788CrossRef
59.
Zurück zum Zitat J. Yuan, J. Wang, K. Zhang, and W. Hu, Fabrication and Properties of a Superhydrophobic Film on an Electroless Plated Magnesium Alloy, RSC Adv., 2017, 7, p 28909–28917CrossRef J. Yuan, J. Wang, K. Zhang, and W. Hu, Fabrication and Properties of a Superhydrophobic Film on an Electroless Plated Magnesium Alloy, RSC Adv., 2017, 7, p 28909–28917CrossRef
Metadaten
Titel
Superhydrophobic Surface of AZ31 Alloy Fabricated by Chemical Treatment in the NiSO4 Solution
verfasst von
M. Yeganeh
M. Omidi
M. Eskandari
Publikationsdatum
29.06.2018
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2018
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-018-3479-3

Weitere Artikel der Ausgabe 8/2018

Journal of Materials Engineering and Performance 8/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.