Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 9/2019

03.04.2019

Superior potassium storage in natural O/N–doped hard carbon derived from maple leaves

verfasst von: Minqing Liu, Dong Jing, Yueli Shi, Quanchao Zhuang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 9/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomaterial has a significant place in energy storage for its utilization of renewable and cost-effective advantages. Herein, we study a hard carbon material (MHC) derived from the maple leaves through a simple carbonization and HNO3-treated activation. XPS and FT-IR analysis shows that the carbon materials are naturally functionalized by O/N-containing groups. Such a dual O/N-containing MHC, when used as a potassium-ion batteries (PIBs) electrode, shows an excellent capacity of 273.2 mAh g−1 (50 mA g−1) at the 100th cycle and good cycling performance of 141.9 mAh g−1 (1 A g−1) at the 1000th cycle. Thereby, it provides an environmentally friendly method of making maple leaf waste profitable in term of anode materials for PIBs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat D. Jia et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013)CrossRef D. Jia et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013)CrossRef
2.
Zurück zum Zitat K. Saravanan, V. Mullaivananathan, N. Kalaiselvi, Dual hetero atom containing bio-carbon: multifunctional electrode material for high performance sodium-ion batteries and oxygen reduction reaction. Electrochim. Acta 176, 670–678 (2015)CrossRef K. Saravanan, V. Mullaivananathan, N. Kalaiselvi, Dual hetero atom containing bio-carbon: multifunctional electrode material for high performance sodium-ion batteries and oxygen reduction reaction. Electrochim. Acta 176, 670–678 (2015)CrossRef
4.
Zurück zum Zitat H. Zhu et al., Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 33, 37–44 (2017)CrossRef H. Zhu et al., Low temperature carbonization of cellulose nanocrystals for high performance carbon anode of sodium-ion batteries. Nano Energy 33, 37–44 (2017)CrossRef
5.
Zurück zum Zitat W. Luo et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015)CrossRef W. Luo et al., Potassium ion batteries with graphitic materials. Nano Lett. 15(11), 7671–7677 (2015)CrossRef
6.
Zurück zum Zitat Y. Xu et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018)CrossRef Y. Xu et al., Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nat. Commun. 9(1), 1720 (2018)CrossRef
7.
Zurück zum Zitat B. Ji et al., A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017)CrossRef B. Ji et al., A novel potassium-ion-based dual-ion battery. Adv. Mater. 29(19), 1700519 (2017)CrossRef
9.
Zurück zum Zitat S. Komaba et al., Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015)CrossRef S. Komaba et al., Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors. Electrochem. Commun. 60, 172–175 (2015)CrossRef
10.
Zurück zum Zitat Z. Jian et al., Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016)CrossRef Z. Jian et al., Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv. Energy Mater. 6(3), 1501874 (2016)CrossRef
11.
Zurück zum Zitat L. Xue et al., A low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139(6), 2164–2167 (2017)CrossRef L. Xue et al., A low-cost high-energy potassium cathode. J. Am. Chem. Soc. 139(6), 2164–2167 (2017)CrossRef
12.
Zurück zum Zitat W. Zhang et al., Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017)CrossRef W. Zhang et al., Phosphorus-based alloy materials for advanced potassium-ion battery anode. J. Am. Chem. Soc. 139(9), 3316–3319 (2017)CrossRef
13.
Zurück zum Zitat A. Eftekhari, Z. Jian, X. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9(5), 4404–4419 (2016)CrossRef A. Eftekhari, Z. Jian, X. Ji, Potassium secondary batteries. ACS Appl. Mater. Interfaces 9(5), 4404–4419 (2016)CrossRef
14.
Zurück zum Zitat C. Chen et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017)CrossRef C. Chen et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017)CrossRef
15.
Zurück zum Zitat J. Yang et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018)CrossRef J. Yang et al., Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv. Mater. 30(4), 1700104 (2018)CrossRef
17.
Zurück zum Zitat L. Wang et al., Antimony/reduced graphene oxide composites as advanced anodes for potassium ion batteries. J. Appl. Electrochem. 48(10), 1115–1120 (2018)CrossRef L. Wang et al., Antimony/reduced graphene oxide composites as advanced anodes for potassium ion batteries. J. Appl. Electrochem. 48(10), 1115–1120 (2018)CrossRef
18.
Zurück zum Zitat B. Cao et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018)CrossRef B. Cao et al., Graphitic carbon nanocage as a stable and high power anode for potassium-ion batteries. Adv. Energy Mater. 8(25), 1801149 (2018)CrossRef
19.
Zurück zum Zitat C. Mei et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(9), 1800171 (2018) C. Mei et al., Sulfur/oxygen codoped porous hard carbon microspheres for high-performance potassium-ion batteries. Adv. Energy Mater. 8(9), 1800171 (2018)
20.
Zurück zum Zitat Y. Li et al., Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 3(1), 71–77 (2014)CrossRef Y. Li et al., Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J. Mater. Chem. A 3(1), 71–77 (2014)CrossRef
21.
Zurück zum Zitat Y.Y. Wang et al., Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors. Chemistryselect 1(7), 1441–1447 (2016)CrossRef Y.Y. Wang et al., Hierarchically porous N-doped carbon nanosheets derived from grapefruit peels for high-performance supercapacitors. Chemistryselect 1(7), 1441–1447 (2016)CrossRef
22.
Zurück zum Zitat Y. Xie et al., Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Adv. 5(100), 82503–82512 (2015)CrossRef Y. Xie et al., Carbon nanotube based polymer nanocomposites: biomimic preparation and organic dye adsorption applications. RSC Adv. 5(100), 82503–82512 (2015)CrossRef
23.
Zurück zum Zitat N. Moreno et al., Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon 70(4), 241–248 (2014)CrossRef N. Moreno et al., Lithium–sulfur batteries with activated carbons derived from olive stones. Carbon 70(4), 241–248 (2014)CrossRef
24.
Zurück zum Zitat H. Zhao et al., Egg yolk-derived phosphorus and nitrogen dual doped nano carbon capsules for high-performance lithium ion batteries. Mater. Lett. 167, 93–97 (2016)CrossRef H. Zhao et al., Egg yolk-derived phosphorus and nitrogen dual doped nano carbon capsules for high-performance lithium ion batteries. Mater. Lett. 167, 93–97 (2016)CrossRef
25.
Zurück zum Zitat X. Zhu et al., A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy Environ. 2(3), 310–315 (2017)CrossRef X. Zhu et al., A green route to synthesize low-cost and high-performance hard carbon as promising sodium-ion battery anodes from sorghum stalk waste. Green Energy Environ. 2(3), 310–315 (2017)CrossRef
26.
Zurück zum Zitat X. Sun et al., A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J. Anal. Appl. Pyrol. 100(3), 181–185 (2013)CrossRef X. Sun et al., A new carbonaceous material derived from biomass source peels as an improved anode for lithium ion batteries. J. Anal. Appl. Pyrol. 100(3), 181–185 (2013)CrossRef
27.
Zurück zum Zitat R.R. Gaddam et al., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)CrossRef R.R. Gaddam et al., Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26, 346–352 (2016)CrossRef
28.
Zurück zum Zitat H. Jianhua et al., Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556 (2015)CrossRef H. Jianhua et al., Hierarchical porous nitrogen-doped carbon nanosheets derived from silk for ultrahigh-capacity battery anodes and supercapacitors. ACS Nano 9(3), 2556 (2015)CrossRef
29.
Zurück zum Zitat W. Luo et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1(36), 10662–10666 (2013)CrossRef W. Luo et al., Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries. J. Mater. Chem. A 1(36), 10662–10666 (2013)CrossRef
30.
Zurück zum Zitat T. Sariyildiz, J.M. Anderson, Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For. Ecol. Manag. 210(1–3), 309–319 (2005) T. Sariyildiz, J.M. Anderson, Variation in the chemical composition of green leaves and leaf litters from three deciduous tree species growing on different soil types. For. Ecol. Manag. 210(1–3), 309–319 (2005)
31.
Zurück zum Zitat Y. Ding et al., Rapid and up-scalable fabrication of free-standing metal oxide nanosheets for high-performance lithium storage. Small 11(17), 2011–2018 (2014)CrossRef Y. Ding et al., Rapid and up-scalable fabrication of free-standing metal oxide nanosheets for high-performance lithium storage. Small 11(17), 2011–2018 (2014)CrossRef
32.
Zurück zum Zitat Y. Zhao et al., Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Interfaces. 7(2), 1132–1139 (2015)CrossRef Y. Zhao et al., Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Appl. Mater. Interfaces. 7(2), 1132–1139 (2015)CrossRef
33.
Zurück zum Zitat H. Li et al., Carbonized leaf membrane with anisotropic surfaces for sodium ion battery. ACS Appl. Mater. Interfaces. 8(3), 2204 (2016)CrossRef H. Li et al., Carbonized leaf membrane with anisotropic surfaces for sodium ion battery. ACS Appl. Mater. Interfaces. 8(3), 2204 (2016)CrossRef
34.
Zurück zum Zitat Y. Liu et al., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996)CrossRef Y. Liu et al., Mechanism of lithium insertion in hard carbons prepared by pyrolysis of epoxy resins. Carbon 34(2), 193–200 (1996)CrossRef
35.
Zurück zum Zitat S.W. Han et al., Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem. Eng. J. 254(7), 597–604 (2014)CrossRef S.W. Han et al., Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem. Eng. J. 254(7), 597–604 (2014)CrossRef
36.
Zurück zum Zitat A. Sadezky et al., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8), 1731–1742 (2005)CrossRef A. Sadezky et al., Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8), 1731–1742 (2005)CrossRef
37.
Zurück zum Zitat V. Selvamani et al., Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim. Acta 190, 337–345 (2016)CrossRef V. Selvamani et al., Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim. Acta 190, 337–345 (2016)CrossRef
38.
Zurück zum Zitat A.C. Dillon, M. Yudasaka, M.S. Dresselhaus, Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4(7), 691–703 (2004)CrossRef A.C. Dillon, M. Yudasaka, M.S. Dresselhaus, Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J. Nanosci. Nanotechnol. 4(7), 691–703 (2004)CrossRef
39.
Zurück zum Zitat X. Zhang et al., Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode. Carbon 100, 600–607 (2016)CrossRef X. Zhang et al., Thermal reduction of graphene oxide mixed with hard carbon and their high performance as lithium ion battery anode. Carbon 100, 600–607 (2016)CrossRef
40.
Zurück zum Zitat J. Ding et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013)CrossRef J. Ding et al., Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013)CrossRef
41.
Zurück zum Zitat M. Li, J. Xue, Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J. Phys. Chem. C 118(5), 2507–2517 (2014)CrossRef M. Li, J. Xue, Integrated synthesis of nitrogen-doped mesoporous carbon from melamine resins with superior performance in supercapacitors. J. Phys. Chem. C 118(5), 2507–2517 (2014)CrossRef
42.
Zurück zum Zitat A.M. Puziy et al., Characterization of synthetic carbons activated with phosphoric acid. Appl. Surf. Sci. 200(1), 196–202 (2002)CrossRef A.M. Puziy et al., Characterization of synthetic carbons activated with phosphoric acid. Appl. Surf. Sci. 200(1), 196–202 (2002)CrossRef
43.
Zurück zum Zitat Y. Zhou et al., Nitrogen and sulfur dual-doped graphene sheets as anode materials with superior cycling stability for lithium-ion batteries. Electrochim. Acta 184, 24–31 (2015)CrossRef Y. Zhou et al., Nitrogen and sulfur dual-doped graphene sheets as anode materials with superior cycling stability for lithium-ion batteries. Electrochim. Acta 184, 24–31 (2015)CrossRef
44.
Zurück zum Zitat J.D. Wigginscamacho, K.J. Stevenson, Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J. Phys. Chem. C 113(44), 19082–19090 (2015)CrossRef J.D. Wigginscamacho, K.J. Stevenson, Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J. Phys. Chem. C 113(44), 19082–19090 (2015)CrossRef
45.
Zurück zum Zitat H. Rui et al., Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128, 224–230 (2018)CrossRef H. Rui et al., Superior potassium storage in chitin-derived natural nitrogen-doped carbon nanofibers. Carbon 128, 224–230 (2018)CrossRef
46.
Zurück zum Zitat X. Qi et al., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018)CrossRef X. Qi et al., Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties. Carbon 131, 79–85 (2018)CrossRef
47.
Zurück zum Zitat C. Chen et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017)CrossRef C. Chen et al., Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. Energy Storage Mater. 8, 161–168 (2017)CrossRef
48.
Zurück zum Zitat B. Dhrubajyoti et al., Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir 30(1), 318–324 (2014)CrossRef B. Dhrubajyoti et al., Nitrogen-doped carbon nanoparticles by flame synthesis as anode material for rechargeable lithium-ion batteries. Langmuir 30(1), 318–324 (2014)CrossRef
49.
Zurück zum Zitat J.D. Wiggins-Camacho, K.J. Stevenson, Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J. Phys. Chem. C 113(44), 19082–19090 (2015)CrossRef J.D. Wiggins-Camacho, K.J. Stevenson, Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J. Phys. Chem. C 113(44), 19082–19090 (2015)CrossRef
Metadaten
Titel
Superior potassium storage in natural O/N–doped hard carbon derived from maple leaves
verfasst von
Minqing Liu
Dong Jing
Yueli Shi
Quanchao Zhuang
Publikationsdatum
03.04.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 9/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01219-x

Weitere Artikel der Ausgabe 9/2019

Journal of Materials Science: Materials in Electronics 9/2019 Zur Ausgabe

Neuer Inhalt