Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 4/2022

05.11.2020

Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining

verfasst von: Zengya Zhao, Sibao Wang, Zehua Wang, Shilong Wang, Chi Ma, Bo Yang

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface roughness, which has a significant influence on fatigue strength and wear resistance, is an important technical parameter. In practical machining, it is unstable and may be larger than the acceptable surface roughness due to unstable machining process. This will seriously deteriorate the surface performance of the workpieces. Therefore, an effective surface roughness stabilization method is of great significance to improve machining efficiency and reduce machining cost. In this paper, a surface roughness stabilization method is proposed and illustrated by taking five-axis machining as an example. A self-learning surface roughness prediction model based on Pigeon-Inspired Optimization and Support Vector Machine is firstly constructed and its prediction error is only 8.69% in the initial stage. This model has the self-learning ability that the prediction accuracy can be improved with the increase of training data. Furthermore, a machining parameters self-adaption adjustment method based on digital twin is proposed to make the machined surface quality stable. In this method, considering the feasibility of practical machining operation, the cutter posture (i.e. lead angle and tilt angle in five-axis machining) and spindle speed are selected as the adjustable parameters. When the predicted surface roughness doesn’t meet the requirements, the Gradient Descent algorithm is applied to recalculate the new parameters for adjustment. According to the experimental results, the proposed method can stabilize surface roughness and improve the surface quality, which is vital for the precision manufacturing of complex workpiece. Meanwhile, it also greatly improves the intelligence level of manufacturing and production.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture, 43(8), 833–844.CrossRef Benardos, P. G., & Vosniakos, G. C. (2003). Predicting surface roughness in machining: A review. International Journal of Machine Tools and Manufacture, 43(8), 833–844.CrossRef
Zurück zum Zitat Chen, J. S., Huang, Y. K., & Chen, M. S. (2011). A study of the surface scallop generating mechanism in the ball-end milling process. International Journal of Machine Tools and Manufacture, 45(9), 1077–1084.CrossRef Chen, J. S., Huang, Y. K., & Chen, M. S. (2011). A study of the surface scallop generating mechanism in the ball-end milling process. International Journal of Machine Tools and Manufacture, 45(9), 1077–1084.CrossRef
Zurück zum Zitat Cicek, A., Kivak, T., & Ekici, E. (2015). Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. Journal of Intelligent Manufacturing, 26(2), 295–305.CrossRef Cicek, A., Kivak, T., & Ekici, E. (2015). Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills. Journal of Intelligent Manufacturing, 26(2), 295–305.CrossRef
Zurück zum Zitat Duan, H. B., & Qiao, P. X. (2014). Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing & Cybernetics, 7(1), 24–37.CrossRef Duan, H. B., & Qiao, P. X. (2014). Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. International Journal of Intelligent Computing & Cybernetics, 7(1), 24–37.CrossRef
Zurück zum Zitat Geng, L., Liu, P. L., & Liu, K. (2015). Optimization of cutter posture based on cutting force prediction for five-axis machining with ball-end cutters. International Journal of Advanced Manufacturing Technology, 78(5–8), 1289–1303.CrossRef Geng, L., Liu, P. L., & Liu, K. (2015). Optimization of cutter posture based on cutting force prediction for five-axis machining with ball-end cutters. International Journal of Advanced Manufacturing Technology, 78(5–8), 1289–1303.CrossRef
Zurück zum Zitat Ghosh, G., Mandal, P., & Mondal, S. C. (2019a). Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization. The International Journal of Advanced Manufacturing Technology, 100(5), 1223–1242.CrossRef Ghosh, G., Mandal, P., & Mondal, S. C. (2019a). Modeling and optimization of surface roughness in keyway milling using ANN, genetic algorithm, and particle swarm optimization. The International Journal of Advanced Manufacturing Technology, 100(5), 1223–1242.CrossRef
Zurück zum Zitat Ghosh, A. K., Ullah, A. M. M. S., & Kubo, A. (2019b). Hidden Markov model-based digital twin construction for futuristic manufacturing systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 33(3), 317–331.CrossRef Ghosh, A. K., Ullah, A. M. M. S., & Kubo, A. (2019b). Hidden Markov model-based digital twin construction for futuristic manufacturing systems. Artificial Intelligence for Engineering Design, Analysis and Manufacturing, 33(3), 317–331.CrossRef
Zurück zum Zitat Ghosh, A. K., Ullah, A. M. M. S., Kubo, A., Akamatsu, T., & D’Addona, D. M. (2020). Machining phenomenon twin construction for industry 4.0: A case of surface roughness. Journal of Manufacturing and Materials Processing, 4(1), 11.CrossRef Ghosh, A. K., Ullah, A. M. M. S., Kubo, A., Akamatsu, T., & D’Addona, D. M. (2020). Machining phenomenon twin construction for industry 4.0: A case of surface roughness. Journal of Manufacturing and Materials Processing, 4(1), 11.CrossRef
Zurück zum Zitat Huang, P. T. B., Zhang, H. J., & Lin, Y. C. (2017). Development of a Grey online modeling surface roughness monitoring system in end milling operations. Journal of Intelligent Manufacturing, 30, 1923–1936.CrossRef Huang, P. T. B., Zhang, H. J., & Lin, Y. C. (2017). Development of a Grey online modeling surface roughness monitoring system in end milling operations. Journal of Intelligent Manufacturing, 30, 1923–1936.CrossRef
Zurück zum Zitat Karkalos, N. E., Galanis, N. I., & Markopoulos, A. P. (2016). Surface roughness prediction for the milling of Ti–6Al–4 V ELI alloy with the use of statistical and soft computing techniques. Measurement, 90, 25–35.CrossRef Karkalos, N. E., Galanis, N. I., & Markopoulos, A. P. (2016). Surface roughness prediction for the milling of Ti–6Al–4 V ELI alloy with the use of statistical and soft computing techniques. Measurement, 90, 25–35.CrossRef
Zurück zum Zitat Li, Z. X., Zhang, Z. Y., Shi, J. C., & Wu, D. Z. (2019). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing, 57, 488–495.CrossRef Li, Z. X., Zhang, Z. Y., Shi, J. C., & Wu, D. Z. (2019). Prediction of surface roughness in extrusion-based additive manufacturing with machine learning. Robotics and Computer-Integrated Manufacturing, 57, 488–495.CrossRef
Zurück zum Zitat Liang, T., Yao, C. F., Ren, J. X., & Zhang, D. H. (2017). Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17. International Journal of Advanced Manufacturing Technology, 88(9–12), 1–14. Liang, T., Yao, C. F., Ren, J. X., & Zhang, D. H. (2017). Effect of cutter path orientations on cutting forces, tool wear, and surface integrity when ball end milling TC17. International Journal of Advanced Manufacturing Technology, 88(9–12), 1–14.
Zurück zum Zitat Lim, K., Zheng, P., & Chen, C. H. (2019). A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31, 1313–1337.CrossRef Lim, K., Zheng, P., & Chen, C. H. (2019). A state-of-the-art survey of Digital Twin: Techniques, engineering product lifecycle management and business innovation perspectives. Journal of Intelligent Manufacturing, 31, 1313–1337.CrossRef
Zurück zum Zitat Liu, Y., Wan, M., Xing, W. J., Xiao, Q. B., & Zhang, W. H. (2018). Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. International Journal of Mechanical Sciences, 145, 299–317.CrossRef Liu, Y., Wan, M., Xing, W. J., Xiao, Q. B., & Zhang, W. H. (2018). Generalized actual inverse kinematic model for compensating geometric errors in five-axis machine tools. International Journal of Mechanical Sciences, 145, 299–317.CrossRef
Zurück zum Zitat Liu, N., Wang, S. B., Zhang, Y. F., & Lu, W. F. (2016). A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. International Journal of Mechanical Sciences, 118, 13–20.CrossRef Liu, N., Wang, S. B., Zhang, Y. F., & Lu, W. F. (2016). A novel approach to predicting surface roughness based on specific cutting energy consumption when slot milling Al-7075. International Journal of Mechanical Sciences, 118, 13–20.CrossRef
Zurück zum Zitat Lu, X. H., Hu, X. C., Jia, Z. Y., Liu, M. Y., Song, G., Qu, C. L., et al. (2017). Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718. International Journal of Advanced Manufacturing Technology, 94(1), 1–14. Lu, X. H., Hu, X. C., Jia, Z. Y., Liu, M. Y., Song, G., Qu, C. L., et al. (2017). Model for the prediction of 3D surface topography and surface roughness in micro-milling Inconel 718. International Journal of Advanced Manufacturing Technology, 94(1), 1–14.
Zurück zum Zitat Lu, Y. Q., Liu, C., Wang, K. K., Huang, H. Y., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837.CrossRef Lu, Y. Q., Liu, C., Wang, K. K., Huang, H. Y., & Xu, X. (2020). Digital Twin-driven smart manufacturing: Connotation, reference model, applications and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837.CrossRef
Zurück zum Zitat Munoz-Escalona, P., & Maropoulos, P. G. (2015). A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools. Journal of Manufacturing Systems, 36, 216–223.CrossRef Munoz-Escalona, P., & Maropoulos, P. G. (2015). A geometrical model for surface roughness prediction when face milling Al 7075-T7351 with square insert tools. Journal of Manufacturing Systems, 36, 216–223.CrossRef
Zurück zum Zitat Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S., & Abdullah, A. (2004). Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology, 145(1), 46–58.CrossRef Noordin, M. Y., Venkatesh, V. C., Sharif, S., Elting, S., & Abdullah, A. (2004). Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel. Journal of Materials Processing Technology, 145(1), 46–58.CrossRef
Zurück zum Zitat Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29(5), 1045–1061.CrossRef Pimenov, D. Y., Bustillo, A., & Mikolajczyk, T. (2018). Artificial intelligence for automatic prediction of required surface roughness by monitoring wear on face mill teeth. Journal of Intelligent Manufacturing, 29(5), 1045–1061.CrossRef
Zurück zum Zitat Qiu, H. X., & Duan, H. B. (2020). A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Information Sciences, 509, 515–529.CrossRef Qiu, H. X., & Duan, H. B. (2020). A multi-objective pigeon-inspired optimization approach to UAV distributed flocking among obstacles. Information Sciences, 509, 515–529.CrossRef
Zurück zum Zitat Rao, K. V., & Murthy, P. B. G. S. N. (2016). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM. Journal of Intelligent Manufacturing, 29(7), 1533–1543. Rao, K. V., & Murthy, P. B. G. S. N. (2016). Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM. Journal of Intelligent Manufacturing, 29(7), 1533–1543.
Zurück zum Zitat Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the digital twin: A manufacturing case study implementation. Journal of Intelligent Manufacturing, 31(6), 1383–1402.CrossRef Redelinghuys, A. J. H., Basson, A. H., & Kruger, K. (2019). A six-layer architecture for the digital twin: A manufacturing case study implementation. Journal of Intelligent Manufacturing, 31(6), 1383–1402.CrossRef
Zurück zum Zitat Shamshirband, S., Mohammadi, K., Khorasanizadeh, H., Yee, P. L., Lee, M., Petković, D., et al. (2016). Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renewable and Sustainable Energy Reviews, 56, 428–435.CrossRef Shamshirband, S., Mohammadi, K., Khorasanizadeh, H., Yee, P. L., Lee, M., Petković, D., et al. (2016). Estimating the diffuse solar radiation using a coupled support vector machine–wavelet transform model. Renewable and Sustainable Energy Reviews, 56, 428–435.CrossRef
Zurück zum Zitat Sun, Z. W., To, S., Zhang, S. J., & Zhang, G. Q. (2018). Theoretical and experimental investigation into non-uniformity of surface generation in micro-milling. International Journal of Mechanical Sciences, 140, 313–324.CrossRef Sun, Z. W., To, S., Zhang, S. J., & Zhang, G. Q. (2018). Theoretical and experimental investigation into non-uniformity of surface generation in micro-milling. International Journal of Mechanical Sciences, 140, 313–324.CrossRef
Zurück zum Zitat Tangjitsitcharoen, S., Thesniyom, P., & Ratanakuakangwan, S. (2017). Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio. Journal of Intelligent Manufacturing, 28(1), 13–21.CrossRef Tangjitsitcharoen, S., Thesniyom, P., & Ratanakuakangwan, S. (2017). Prediction of surface roughness in ball-end milling process by utilizing dynamic cutting force ratio. Journal of Intelligent Manufacturing, 28(1), 13–21.CrossRef
Zurück zum Zitat Tao, F., Zhang, M., Liu, Y. S., & Nee, A. Y. C. (2018). Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 67(1), 169–172.CrossRef Tao, F., Zhang, M., Liu, Y. S., & Nee, A. Y. C. (2018). Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 67(1), 169–172.CrossRef
Zurück zum Zitat Tong, X., Liu, Q., Pi, S. W., & Xiao, Y. (2020). Real-time machining data application and service based on IMT digital twin. Journal of Intelligent Manufacturing, 31(5), 1113–1132.CrossRef Tong, X., Liu, Q., Pi, S. W., & Xiao, Y. (2020). Real-time machining data application and service based on IMT digital twin. Journal of Intelligent Manufacturing, 31(5), 1113–1132.CrossRef
Zurück zum Zitat Ullah, A. M. M. S. (2017). Surface roughness modeling using Q-sequence. Mathematical & Computational Applications, 22(2), 33.CrossRef Ullah, A. M. M. S. (2017). Surface roughness modeling using Q-sequence. Mathematical & Computational Applications, 22(2), 33.CrossRef
Zurück zum Zitat Ullah, A. M. M. S. (2019). Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Advanced Engineering Informatics, 39, 1–13.CrossRef Ullah, A. M. M. S. (2019). Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. Advanced Engineering Informatics, 39, 1–13.CrossRef
Zurück zum Zitat Ullah, A. M. M. S., Fuji, A., Kubo, A., Tamaki, J., & Kimura, M. (2015). On the surface metrology of bimetallic components. Machining Science & Technology An International Journal, 19(2), 339–359.CrossRef Ullah, A. M. M. S., Fuji, A., Kubo, A., Tamaki, J., & Kimura, M. (2015). On the surface metrology of bimetallic components. Machining Science & Technology An International Journal, 19(2), 339–359.CrossRef
Zurück zum Zitat Ullah, A. M. M. S., Tamaki, J., & Kubo, A. (2010). Modeling and simulation of 3D surface finish of grinding. Advanced Materials Research, 126–128, 672–677.CrossRef Ullah, A. M. M. S., Tamaki, J., & Kubo, A. (2010). Modeling and simulation of 3D surface finish of grinding. Advanced Materials Research, 126–128, 672–677.CrossRef
Zurück zum Zitat Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988–999.CrossRef Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988–999.CrossRef
Zurück zum Zitat Vapnik, V. N. (2000). The nature of statistical learning theory. New York: Springer.CrossRef Vapnik, V. N. (2000). The nature of statistical learning theory. New York: Springer.CrossRef
Zurück zum Zitat Wang, S. B. (2015). Automated five-axis tool path generation based on dynamic analysis. Singapore: National University of Singapore. Wang, S. B. (2015). Automated five-axis tool path generation based on dynamic analysis. Singapore: National University of Singapore.
Zurück zum Zitat Wang, S. B., Geng, L., Zhang, Y. F., Liu, K., & Ng, T. E. (2015). Cutting force prediction for five-axis ball-end milling considering cutter vibrations and run-out. International Journal of Mechanical Sciences, 96–97, 206–215.CrossRef Wang, S. B., Geng, L., Zhang, Y. F., Liu, K., & Ng, T. E. (2015). Cutting force prediction for five-axis ball-end milling considering cutter vibrations and run-out. International Journal of Mechanical Sciences, 96–97, 206–215.CrossRef
Zurück zum Zitat Zhao, Z. Y., Wang, S. B., Wang, Z. H., Liu, N., Wang, S. L., Ma, C., et al. (2019). Interference- and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining. International Journal of Mechanical Sciences, 171, 105395.CrossRef Zhao, Z. Y., Wang, S. B., Wang, Z. H., Liu, N., Wang, S. L., Ma, C., et al. (2019). Interference- and chatter-free cutter posture optimization towards minimal surface roughness in five-axis machining. International Journal of Mechanical Sciences, 171, 105395.CrossRef
Metadaten
Titel
Surface roughness stabilization method based on digital twin-driven machining parameters self-adaption adjustment: a case study in five-axis machining
verfasst von
Zengya Zhao
Sibao Wang
Zehua Wang
Shilong Wang
Chi Ma
Bo Yang
Publikationsdatum
05.11.2020
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 4/2022
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-020-01698-4

Weitere Artikel der Ausgabe 4/2022

Journal of Intelligent Manufacturing 4/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.