Skip to main content
Erschienen in:
Buchtitelbild

2016 | OriginalPaper | Buchkapitel

1. Surface Treatments of Titanium with Antibacterial Agents for Implant Applications

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

It was only in the twentieth century that technology enabled the isolation of metallic titanium from its minerals [1]. Thus, industrial production of titanium began relatively late, in 1946. Due to its low density and high corrosion resistance, titanium became indispensable in the aerospace industry. The use of titanium in biomedical applications dates from 1965. Commercially pure titanium and its alloy Ti–6Al–4V are the most commonly used titanium-based biomaterials, especially in orthopedics. Millions of patients are treated with various joint replacements, many patients also with other types of prostheses, such as tumor prostheses, small joint prostheses, fracture-treatment devices, etc.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Glycocalix—the glycoprotein–polysaccharide covering that surrounds many cells.
 
2
PI is a membrane-impermeable fluorescent dye that is used to detect permeation of the cell membrane.
 
3
There are several possibilities to evaluate cell viability and proliferation:
  • MTT reagent [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolim bromide] is usually used to detect cell viability or proliferation of cells in contact with the material surface. MTT reagent reacts directly with mitochondrial to form formazan crystals on metabolically active cells.
  • Alamar blue® assay is designed to measure quantitatively the proliferation of various human and animal cell lines, bacteria, and fungi. It incorporates a fluorometric/colorimetric growth indicator based on detection of metabolic activity. Specifically, the system incorporates an oxidation–reduction indicator that both fluoresces and changes color in response to chemical reduction of growth medium resulting from cell growth.
  • Double-stranded DNA (dsDNA) test using an ultrasensitive fluorescent nucleic acid stain for quantitating dsDNA in solution. Detecting and quantitating small amounts of DNA is extremely important in a wide variety of biological applications.
  • Lactate dehydrogenase (LDH) activity, which is a marker for tissue damage.
 
4
The activity and attachment of osteoblast cells can be evaluated by:
  • Cell adhesion analyzed under electron microscope after culturing with osteoblast cell line.
  • Osteoblast activity measured by alkaline phosphatase (ALP) activity. ALP is a hydrolase enzyme responsible for removing phosphate groups from many types of molecules, including nucleotides, proteins, and alkaloids. Also, ALP increases if there is active bone formation occurring, as ALP is a by-product of osteoblast activity.
 
Literatur
1.
Zurück zum Zitat Milošev I (2011) Metallic materials for biomedical applications: laboratory and clinical studies. Pure Appl Chem 83:309–324 Milošev I (2011) Metallic materials for biomedical applications: laboratory and clinical studies. Pure Appl Chem 83:309–324
2.
Zurück zum Zitat Namba RS, Inacio MC, Paxton EW (2012) Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg 94:1330–1338CrossRef Namba RS, Inacio MC, Paxton EW (2012) Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg 94:1330–1338CrossRef
3.
Zurück zum Zitat Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotics-coated implants: a review. Injury 37:S105–S112CrossRef Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotics-coated implants: a review. Injury 37:S105–S112CrossRef
4.
Zurück zum Zitat Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183CrossRef Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183CrossRef
5.
Zurück zum Zitat Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554CrossRef Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554CrossRef
6.
Zurück zum Zitat Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366CrossRef Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366CrossRef
7.
Zurück zum Zitat Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res 91B:470–480CrossRef Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res 91B:470–480CrossRef
8.
Zurück zum Zitat Durmus NG, Webster TJ (2012) Nanostructured titanium: the ideal material for improving orthopedic implant efficacy. Nanomedicine 7:791–793CrossRef Durmus NG, Webster TJ (2012) Nanostructured titanium: the ideal material for improving orthopedic implant efficacy. Nanomedicine 7:791–793CrossRef
9.
Zurück zum Zitat Ercan B, Webster TJ (2010) The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 31:3684–3693CrossRef Ercan B, Webster TJ (2010) The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 31:3684–3693CrossRef
10.
Zurück zum Zitat Kulkarni M, Mazare A, Gongadze E, Pertukova Š, Kralj-Iglič V, Milošev I, Schmuki P, Iglič A, Mozetič M (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26:062002 (18p)CrossRef Kulkarni M, Mazare A, Gongadze E, Pertukova Š, Kralj-Iglič V, Milošev I, Schmuki P, Iglič A, Mozetič M (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26:062002 (18p)CrossRef
11.
Zurück zum Zitat Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595CrossRef Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595CrossRef
12.
Zurück zum Zitat Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846CrossRef Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846CrossRef
13.
Zurück zum Zitat Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR (2011) Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials 32:951–960CrossRef Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR (2011) Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials 32:951–960CrossRef
14.
Zurück zum Zitat Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713CrossRef Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713CrossRef
15.
Zurück zum Zitat Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, González-Martín ML (2009) In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater 5:181–192CrossRef Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, González-Martín ML (2009) In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater 5:181–192CrossRef
16.
Zurück zum Zitat Grigorescu S, Ungureanu C, Kirchgeorg R, Schmuki P, Demetrescu I (2012) Various sized nanotubes on TiZr for antibacterial surfaces. Appl Surf Sci 270:190–196CrossRef Grigorescu S, Ungureanu C, Kirchgeorg R, Schmuki P, Demetrescu I (2012) Various sized nanotubes on TiZr for antibacterial surfaces. Appl Surf Sci 270:190–196CrossRef
17.
Zurück zum Zitat Mathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ (2014) Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceutical. Int J Nanomed 9:1775–1781CrossRef Mathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ (2014) Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceutical. Int J Nanomed 9:1775–1781CrossRef
18.
Zurück zum Zitat Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822CrossRef Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822CrossRef
19.
Zurück zum Zitat Gowri S, Gandhi R Rajiv, Snethil S, Sundrarajan M (2015) Effect of calcination temperature of Nyctanthes plant mediated zirconia nanoparticles; optical and antibacterial activity for optimized zirconia. J Bionanosci 9:181−189 Gowri S, Gandhi R Rajiv, Snethil S, Sundrarajan M (2015) Effect of calcination temperature of Nyctanthes plant mediated zirconia nanoparticles; optical and antibacterial activity for optimized zirconia. J Bionanosci 9:181−189
20.
Zurück zum Zitat Verissimo NC, Gailich BM, Oliveira HG, Caram R, Webster TJ (2015) Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J Biomed Mater Res A 103A:3757–3763CrossRef Verissimo NC, Gailich BM, Oliveira HG, Caram R, Webster TJ (2015) Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J Biomed Mater Res A 103A:3757–3763CrossRef
21.
Zurück zum Zitat Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloid Surf A 439:69–83CrossRef Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloid Surf A 439:69–83CrossRef
22.
Zurück zum Zitat Leckband D, Sheth S, Halperin A (1999) Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci 10:1125–1147CrossRef Leckband D, Sheth S, Halperin A (1999) Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci 10:1125–1147CrossRef
23.
Zurück zum Zitat Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59:777–786CrossRef Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59:777–786CrossRef
24.
Zurück zum Zitat Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, Wang, Jihong Yu X (2011) Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous Mesoporous Mater 146:216–222 Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, Wang, Jihong Yu X (2011) Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous Mesoporous Mater 146:216–222
25.
Zurück zum Zitat Ungureanu C, Pirvu C, Mindroiu M, Demetrescu I (2012) Antibacterial polymeric coating based on polypyrrole and polyethylene glycol on a new alloy TiAlZr. Prog Org Coat 75:349–355CrossRef Ungureanu C, Pirvu C, Mindroiu M, Demetrescu I (2012) Antibacterial polymeric coating based on polypyrrole and polyethylene glycol on a new alloy TiAlZr. Prog Org Coat 75:349–355CrossRef
26.
Zurück zum Zitat Dumitriu C, Popescu M, Ungureanu C, Pirvu C (2015) Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes. Appl Surf Sci 341:157–165CrossRef Dumitriu C, Popescu M, Ungureanu C, Pirvu C (2015) Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes. Appl Surf Sci 341:157–165CrossRef
27.
Zurück zum Zitat Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25:4135–4148CrossRef Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25:4135–4148CrossRef
28.
Zurück zum Zitat Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J Biomed Mater Res 84A:425–435CrossRef Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J Biomed Mater Res 84A:425–435CrossRef
29.
Zurück zum Zitat Chen J, Cao J, Wang J, Maitz FM, Guo L, Zhao Y, Li Q, Xiong K, Huang N (2012) Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J Colloid Interface Sci 368:636–647CrossRef Chen J, Cao J, Wang J, Maitz FM, Guo L, Zhao Y, Li Q, Xiong K, Huang N (2012) Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J Colloid Interface Sci 368:636–647CrossRef
30.
Zurück zum Zitat Zhang F, Zhang Z, Zhu X, Kang E-T, Neoh K-G (2008) Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 29:47515–47519 Zhang F, Zhang Z, Zhu X, Kang E-T, Neoh K-G (2008) Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 29:47515–47519
31.
Zurück zum Zitat Kugel A, Stafslien S, Chisholm BJ (2011) Antimicrobial coatings produced by “tethering” biocides to the coating matrix: A comprehensive review. Prog Org Coat 72:222–252CrossRef Kugel A, Stafslien S, Chisholm BJ (2011) Antimicrobial coatings produced by “tethering” biocides to the coating matrix: A comprehensive review. Prog Org Coat 72:222–252CrossRef
32.
Zurück zum Zitat Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins ACL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterials surfaces. Acta Biomater 7:1431–1440CrossRef Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins ACL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterials surfaces. Acta Biomater 7:1431–1440CrossRef
33.
Zurück zum Zitat Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575CrossRef Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575CrossRef
34.
Zurück zum Zitat Hilpert K, Elliot M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DFH, Weaver LL, Henklein P, Ulrich AS, Chiang SHY, Farmer SW, Pante N, Volkmer R, Hancock REW (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69CrossRef Hilpert K, Elliot M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DFH, Weaver LL, Henklein P, Ulrich AS, Chiang SHY, Farmer SW, Pante N, Volkmer R, Hancock REW (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69CrossRef
35.
Zurück zum Zitat Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRef Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250CrossRef
36.
Zurück zum Zitat Fjell CD, Jenssen H, Hilper K, Cheung WA, Panté N, Hancock REW, Cherkasov A (2009) Identification of novel antimicrobial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015CrossRef Fjell CD, Jenssen H, Hilper K, Cheung WA, Panté N, Hancock REW, Cherkasov A (2009) Identification of novel antimicrobial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015CrossRef
37.
Zurück zum Zitat Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909CrossRef Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909CrossRef
38.
Zurück zum Zitat Lin W, Junjian C, Chengzhi C, Lin S, Sa L, Li R, Yingjun W (2015) Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility. J Mater Chem B 3:30–33CrossRef Lin W, Junjian C, Chengzhi C, Lin S, Sa L, Li R, Yingjun W (2015) Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility. J Mater Chem B 3:30–33CrossRef
39.
Zurück zum Zitat Corrales Ureňa YR, Wittig L, Vieira Nascimento M, Luiz Faccioni J, Filho PNL, Rischka K (2015) Influences of the pH on the adsorption properties of an antimicrobial peptide on titanium surfaces. Appl Adhes Sci 3:7CrossRef Corrales Ureňa YR, Wittig L, Vieira Nascimento M, Luiz Faccioni J, Filho PNL, Rischka K (2015) Influences of the pH on the adsorption properties of an antimicrobial peptide on titanium surfaces. Appl Adhes Sci 3:7CrossRef
40.
Zurück zum Zitat Kazemzadeh-Narbat M, Kindrachuk Juan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 21:9519–9526CrossRef Kazemzadeh-Narbat M, Kindrachuk Juan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 21:9519–9526CrossRef
41.
Zurück zum Zitat Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Jancock REW, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977CrossRef Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Jancock REW, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977CrossRef
42.
Zurück zum Zitat Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRef Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465CrossRef
43.
Zurück zum Zitat Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201CrossRef Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201CrossRef
44.
Zurück zum Zitat Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247CrossRef Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247CrossRef
45.
Zurück zum Zitat Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 144:51–63CrossRef Kong M, Chen XG, Xing K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 144:51–63CrossRef
46.
Zurück zum Zitat Muzzarelli RAA, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci 186:151–209CrossRef Muzzarelli RAA, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci 186:151–209CrossRef
47.
Zurück zum Zitat Day AJ, Sheehan JK (2001) Hyaluronan: polysaccharide chaos to protein organisation. Curr Opin Chem Biol 11:617–622 Day AJ, Sheehan JK (2001) Hyaluronan: polysaccharide chaos to protein organisation. Curr Opin Chem Biol 11:617–622
48.
Zurück zum Zitat Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23:4503–4513CrossRef Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23:4503–4513CrossRef
49.
Zurück zum Zitat Gribbon P, Heng BC, Hardingham TE (2000) The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem J 350:329–335 Gribbon P, Heng BC, Hardingham TE (2000) The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem J 350:329–335
50.
Zurück zum Zitat Carlson GA, Dragoo JL, Samimi B, Bruckner DA, Bernard GW, Hedrick M, Benhaim P (2004) Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochem Biophys Res Commun 321:472–478CrossRef Carlson GA, Dragoo JL, Samimi B, Bruckner DA, Bernard GW, Hedrick M, Benhaim P (2004) Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochem Biophys Res Commun 321:472–478CrossRef
51.
Zurück zum Zitat Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, Palmieri B, Blasi E (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338CrossRef Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, Palmieri B, Blasi E (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338CrossRef
52.
Zurück zum Zitat Harris LG, Richards RG (2004) Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med 15:311–314CrossRef Harris LG, Richards RG (2004) Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med 15:311–314CrossRef
53.
Zurück zum Zitat Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2006) A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7:1610–1622CrossRef Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2006) A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7:1610–1622CrossRef
54.
Zurück zum Zitat Chua PH, Neoh KG, Shi Z, Kang ET (2008) Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res 87A:1061–1074CrossRef Chua PH, Neoh KG, Shi Z, Kang ET (2008) Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res 87A:1061–1074CrossRef
55.
Zurück zum Zitat Cassinelli C, Morra M, Pavesio A, Renier D (2000) Evaluation of interfacial properties of hylarunonan coated poly(methylmethacrylate) intraocular lenses. J Biomater Sci Polym Ed 11:961–977CrossRef Cassinelli C, Morra M, Pavesio A, Renier D (2000) Evaluation of interfacial properties of hylarunonan coated poly(methylmethacrylate) intraocular lenses. J Biomater Sci Polym Ed 11:961–977CrossRef
56.
Zurück zum Zitat Chua P-H, Neoh K-G, Kang E-T, Wang W (2007) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29:1412–1421CrossRef Chua P-H, Neoh K-G, Kang E-T, Wang W (2007) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29:1412–1421CrossRef
57.
Zurück zum Zitat Chudobova D, Nejdl L, Gumulec J, Krystofova O, Rodrigo MAM, Kynicky J, Ruttkay-Nedecky B, Kopel P, Babula P, Adam V, Kizek R (2013) Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int J Mol Sci 14:13592–13614CrossRef Chudobova D, Nejdl L, Gumulec J, Krystofova O, Rodrigo MAM, Kynicky J, Ruttkay-Nedecky B, Kopel P, Babula P, Adam V, Kizek R (2013) Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int J Mol Sci 14:13592–13614CrossRef
58.
Zurück zum Zitat Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P (2014) Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent 42:1464–1472CrossRef Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P (2014) Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent 42:1464–1472CrossRef
59.
Zurück zum Zitat Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48CrossRef Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48CrossRef
60.
Zurück zum Zitat Torabi S, Mahdavian AR, Sanei M, Abdollahi A (2016) Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films. Mater Sci Eng C 59:1–9CrossRef Torabi S, Mahdavian AR, Sanei M, Abdollahi A (2016) Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films. Mater Sci Eng C 59:1–9CrossRef
61.
Zurück zum Zitat Cui X, Li CM, Bao H, Zheng X, Lu Z (2008) In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J Colloid Interface Sci 327:459–465CrossRef Cui X, Li CM, Bao H, Zheng X, Lu Z (2008) In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J Colloid Interface Sci 327:459–465CrossRef
62.
Zurück zum Zitat Abdel-Mohsen AM, Hrdina R, Burgert L, Krylova G, Abdel-Rahman RM, Krejcova A, Steinhart M, Benes L (2012) Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr Polym 89:411–422CrossRef Abdel-Mohsen AM, Hrdina R, Burgert L, Krylova G, Abdel-Rahman RM, Krejcova A, Steinhart M, Benes L (2012) Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr Polym 89:411–422CrossRef
63.
Zurück zum Zitat Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ (2009) Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine 4:421–429CrossRef Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ (2009) Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine 4:421–429CrossRef
64.
Zurück zum Zitat Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. App Environ Microbiol 73:1712–1720CrossRef Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. App Environ Microbiol 73:1712–1720CrossRef
65.
Zurück zum Zitat Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef
66.
Zurück zum Zitat Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRef Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668CrossRef
67.
Zurück zum Zitat Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRef Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83CrossRef
68.
Zurück zum Zitat Park H-J, Kim Y, Kim J, Lee J-H, Hahn J-A, Guc MB, Yoona J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRef Park H-J, Kim Y, Kim J, Lee J-H, Hahn J-A, Guc MB, Yoona J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032CrossRef
69.
Zurück zum Zitat Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750CrossRef Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750CrossRef
70.
Zurück zum Zitat Sondi I, Salopek-Sondi B (2003) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef Sondi I, Salopek-Sondi B (2003) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRef
71.
Zurück zum Zitat Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRef Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074CrossRef
72.
Zurück zum Zitat Morones-Ramirez RJ, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med 5:190 (11p)CrossRef Morones-Ramirez RJ, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med 5:190 (11p)CrossRef
73.
Zurück zum Zitat Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed 44:2190–2209CrossRef Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed 44:2190–2209CrossRef
74.
Zurück zum Zitat Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325CrossRef Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325CrossRef
75.
Zurück zum Zitat Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73 (10p)CrossRef Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73 (10p)CrossRef
76.
Zurück zum Zitat Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101 Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101
77.
Zurück zum Zitat Guin D, Manorama SV, Latha JNL, Singh S (2007) Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome. J Phys Chem 111:13393–13397 Guin D, Manorama SV, Latha JNL, Singh S (2007) Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome. J Phys Chem 111:13393–13397
78.
Zurück zum Zitat Aguilar-Méndez MA, Martín-Martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532CrossRef Aguilar-Méndez MA, Martín-Martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532CrossRef
79.
Zurück zum Zitat Zeng J, Zheng Y, Rycenga M, Tao J, Li Z-Y, Zhang Q, Zhu Y, Xia Y (2010) Controlling the shapes of silver nanocrystals with different capping agents. J Am Chem Soc 132:8552–8553CrossRef Zeng J, Zheng Y, Rycenga M, Tao J, Li Z-Y, Zhang Q, Zhu Y, Xia Y (2010) Controlling the shapes of silver nanocrystals with different capping agents. J Am Chem Soc 132:8552–8553CrossRef
80.
Zurück zum Zitat George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759CrossRef George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, Xia T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759CrossRef
81.
Zurück zum Zitat Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRef Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96CrossRef
82.
Zurück zum Zitat Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141CrossRef Li W-R, Xie X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141CrossRef
83.
Zurück zum Zitat Li Y, Leung P, Yao L, Song QW, Newton E (2005) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63CrossRef Li Y, Leung P, Yao L, Song QW, Newton E (2005) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63CrossRef
84.
Zurück zum Zitat Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7CrossRef Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7CrossRef
85.
Zurück zum Zitat Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481CrossRef Wang Z, Xia T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481CrossRef
86.
Zurück zum Zitat Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40:257–262CrossRef Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40:257–262CrossRef
87.
Zurück zum Zitat Gosheger G, Herdes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556CrossRef Gosheger G, Herdes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556CrossRef
88.
Zurück zum Zitat Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antibacterial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22 (10p)CrossRef Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antibacterial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22 (10p)CrossRef
89.
Zurück zum Zitat Hauschild G, Hardes J, Gosheger G, Stoeppeler S, Ahrens H, Blaske F, Wehe C, Karst U, Höll S (2015) Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model. Biomed Res Int 2015:292406 (10p)CrossRef Hauschild G, Hardes J, Gosheger G, Stoeppeler S, Ahrens H, Blaske F, Wehe C, Karst U, Höll S (2015) Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model. Biomed Res Int 2015:292406 (10p)CrossRef
90.
Zurück zum Zitat Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4:445–454CrossRef Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4:445–454CrossRef
91.
Zurück zum Zitat Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRef Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231CrossRef
92.
Zurück zum Zitat Rameshbabu N, Sampath Kumar TSS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP (2007) Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J Biomed Mater Res A 80A:581–591CrossRef Rameshbabu N, Sampath Kumar TSS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP (2007) Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J Biomed Mater Res A 80A:581–591CrossRef
93.
Zurück zum Zitat Arumugam SK, Sastry TP, Sreedhar B, Mandal AB (2006) One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic–inorganic hybrid nanocomposite. J Biomed Mater Res A 80:391–398 Arumugam SK, Sastry TP, Sreedhar B, Mandal AB (2006) One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic–inorganic hybrid nanocomposite. J Biomed Mater Res A 80:391–398
94.
Zurück zum Zitat Yan Y, Zhang X, Huang Y, Ding Q, Pang X (2014) Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci 314:348–357CrossRef Yan Y, Zhang X, Huang Y, Ding Q, Pang X (2014) Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci 314:348–357CrossRef
95.
Zurück zum Zitat Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 202:3815–3821CrossRef Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 202:3815–3821CrossRef
96.
Zurück zum Zitat Bai X, Sandukas S, Appleford M, Ong LJ, Rabiei A (2011) Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res B Appl Biomater 100B:553–561CrossRef Bai X, Sandukas S, Appleford M, Ong LJ, Rabiei A (2011) Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res B Appl Biomater 100B:553–561CrossRef
97.
Zurück zum Zitat Grubova YI, Surmeneva MA, Ivanova AA, Kravchuk K, Prymak O, Epple M, Buck V, Surmenev RA (2015) The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings. Surf Coat Technol 276:595–601CrossRef Grubova YI, Surmeneva MA, Ivanova AA, Kravchuk K, Prymak O, Epple M, Buck V, Surmenev RA (2015) The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings. Surf Coat Technol 276:595–601CrossRef
98.
Zurück zum Zitat Song WH, Ryu HS, Hong SH (2008) Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J Biomed Mater Res A 88A:246–254CrossRef Song WH, Ryu HS, Hong SH (2008) Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J Biomed Mater Res A 88A:246–254CrossRef
99.
Zurück zum Zitat Lu X, Zhang B, Wang Y, Zhou X, Weng J, Qu S, Feng B, Watari F, Ding Y, Leng Y (2011) Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface 8:529–539CrossRef Lu X, Zhang B, Wang Y, Zhou X, Weng J, Qu S, Feng B, Watari F, Ding Y, Leng Y (2011) Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface 8:529–539CrossRef
100.
Zurück zum Zitat Mo A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255:435–438CrossRef Mo A, Liao J, Xu W, Xian S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255:435–438CrossRef
101.
Zurück zum Zitat Sygnatowicz M, Keyshar K, Tiwari A (2010) Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. Biol Biomed Mater 62:65–70 Sygnatowicz M, Keyshar K, Tiwari A (2010) Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. Biol Biomed Mater 62:65–70
102.
Zurück zum Zitat Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F (2011) Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res Part B Appl Biomater 97B:40–48CrossRef Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F (2011) Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res Part B Appl Biomater 97B:40–48CrossRef
103.
Zurück zum Zitat Feng QL, Cui FZ, Kim TN, Kim JW (1999) Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility. J Mater Sci Lett 18:559–561CrossRef Feng QL, Cui FZ, Kim TN, Kim JW (1999) Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility. J Mater Sci Lett 18:559–561CrossRef
104.
Zurück zum Zitat Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRef Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517CrossRef
105.
Zurück zum Zitat Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19:3603–3609CrossRef Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19:3603–3609CrossRef
106.
Zurück zum Zitat Trujillo NA, Oldinski RA, Ma H, Bryers JD, Williams JD, Popat KC (2012) Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater Sci Eng 32:2135–2144CrossRef Trujillo NA, Oldinski RA, Ma H, Bryers JD, Williams JD, Popat KC (2012) Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater Sci Eng 32:2135–2144CrossRef
107.
Zurück zum Zitat Singh B, Kumar Dubey A, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2(0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng 31C:1320–1329CrossRef Singh B, Kumar Dubey A, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2(0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng 31C:1320–1329CrossRef
108.
Zurück zum Zitat Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res 82A:899–906CrossRef Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res 82A:899–906CrossRef
109.
Zurück zum Zitat Chung R-J, Hsieh M-F, Huang K-C, Perng L-H, Chou F-I, Chin T-S (2005) Anti-microbial hydroxyapatite particles synthesized by a sol–gel route. J Sol-Gel Sci Technol 33:229–239CrossRef Chung R-J, Hsieh M-F, Huang K-C, Perng L-H, Chou F-I, Chin T-S (2005) Anti-microbial hydroxyapatite particles synthesized by a sol–gel route. J Sol-Gel Sci Technol 33:229–239CrossRef
110.
Zurück zum Zitat Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172CrossRef
111.
Zurück zum Zitat Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRef Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRef
112.
Zurück zum Zitat Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRef Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874CrossRef
113.
Zurück zum Zitat Visai L, Nardo LD, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR (2011) Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs 34:929–946CrossRef Visai L, Nardo LD, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR (2011) Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs 34:929–946CrossRef
114.
Zurück zum Zitat Bonetta S, Bonetta S, Motta F, Strini A, Carraro E (2013) Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express 3:1–8CrossRef Bonetta S, Bonetta S, Motta F, Strini A, Carraro E (2013) Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express 3:1–8CrossRef
115.
Zurück zum Zitat Nakano R, Hara M, Ishiguro H, Yao Y, Ochiai T, Nakata K, Murakami T, Kajioka J, Sunada K, Hashimoto K, Fujishima A, Kubota Y (2013) Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3:310–323CrossRef Nakano R, Hara M, Ishiguro H, Yao Y, Ochiai T, Nakata K, Murakami T, Kajioka J, Sunada K, Hashimoto K, Fujishima A, Kubota Y (2013) Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3:310–323CrossRef
116.
Zurück zum Zitat Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol Chem 156:227–233CrossRef Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol Chem 156:227–233CrossRef
117.
Zurück zum Zitat Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15CrossRef Jin C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15CrossRef
118.
Zurück zum Zitat Li H, Duan X, Liu G, Liu X (2008) Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J Mater Sci 43:1669–1676CrossRef Li H, Duan X, Liu G, Liu X (2008) Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J Mater Sci 43:1669–1676CrossRef
119.
Zurück zum Zitat Zheng J, Yu H, Li X, Zhang S (2008) Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration. Appl Surf Sci 254:1630–1635CrossRef Zheng J, Yu H, Li X, Zhang S (2008) Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration. Appl Surf Sci 254:1630–1635CrossRef
120.
Zurück zum Zitat Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21:11781–11793CrossRef Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21:11781–11793CrossRef
121.
Zurück zum Zitat Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol Chem 216:283–289CrossRef Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol Chem 216:283–289CrossRef
122.
Zurück zum Zitat Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879CrossRef Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879CrossRef
123.
Zurück zum Zitat Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater 114:431–439CrossRef Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater 114:431–439CrossRef
124.
Zurück zum Zitat Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:1–9 Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:1–9
125.
Zurück zum Zitat Amin SA, Pazouki M, Hosseinnia A (2009) Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technol 196:241–245CrossRef Amin SA, Pazouki M, Hosseinnia A (2009) Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technol 196:241–245CrossRef
126.
Zurück zum Zitat Guo L, Feng W, Liu X et al (2015) Sol–gel synthesis of antibacterial hybrid coatings on titanium. Mater Lett 160:448–451CrossRef Guo L, Feng W, Liu X et al (2015) Sol–gel synthesis of antibacterial hybrid coatings on titanium. Mater Lett 160:448–451CrossRef
127.
Zurück zum Zitat Wang Q, Yu H, Zhong L, Liu J, Sun J, Shen J (2006) Incorporation of silver ions into ultrathin titanium phosphate films: in situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem Mater 18:1988–1994CrossRef Wang Q, Yu H, Zhong L, Liu J, Sun J, Shen J (2006) Incorporation of silver ions into ultrathin titanium phosphate films: in situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem Mater 18:1988–1994CrossRef
128.
Zurück zum Zitat Zhao B, Chen YW (2011) Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity. J Phys Chem Solids 72:1312–1318CrossRef Zhao B, Chen YW (2011) Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity. J Phys Chem Solids 72:1312–1318CrossRef
129.
Zurück zum Zitat Fu T, Shen Y, Alajmi Z, Wang Y, Yang S, Li G (2014) Sol–gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy. Ceram Int 40:12423–12429CrossRef Fu T, Shen Y, Alajmi Z, Wang Y, Yang S, Li G (2014) Sol–gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy. Ceram Int 40:12423–12429CrossRef
130.
Zurück zum Zitat Lan MY, Liu CP, Huang HH, Lee SW (2013) Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS ONE 8, e75364 (8p)CrossRef Lan MY, Liu CP, Huang HH, Lee SW (2013) Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS ONE 8, e75364 (8p)CrossRef
131.
Zurück zum Zitat Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chuet PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716CrossRef Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chuet PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716CrossRef
132.
Zurück zum Zitat Kamaraj K, George RP, Anandkumar B, Parvathavarthini N, Kamachi U, Mudali K (2015) A silver nanoparticle loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry 106(pt B):290–297CrossRef Kamaraj K, George RP, Anandkumar B, Parvathavarthini N, Kamachi U, Mudali K (2015) A silver nanoparticle loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry 106(pt B):290–297CrossRef
133.
Zurück zum Zitat Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol Chem 187:53–63CrossRef Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol Chem 187:53–63CrossRef
134.
Zurück zum Zitat Santillán MJ, Quaranta NE, Boccaccini AR (2010) Titania and titania–silver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions. Surf Coat Technol 205:2562–2571CrossRef Santillán MJ, Quaranta NE, Boccaccini AR (2010) Titania and titania–silver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions. Surf Coat Technol 205:2562–2571CrossRef
135.
Zurück zum Zitat Li B, Liu X, Meng F, Chang J, Ding C (2009) Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater Chem Phys 118:99–104CrossRef Li B, Liu X, Meng F, Chang J, Ding C (2009) Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater Chem Phys 118:99–104CrossRef
136.
Zurück zum Zitat Gao J, Zhao C, Zhou J, Li C, Shao Y, Shi C, Zhu Y (2015) Plasma sprayed rutile titania-nanosilver antibacterial coatings. Appl Surf Sci 355:593–601CrossRef Gao J, Zhao C, Zhou J, Li C, Shao Y, Shi C, Zhu Y (2015) Plasma sprayed rutile titania-nanosilver antibacterial coatings. Appl Surf Sci 355:593–601CrossRef
137.
Zurück zum Zitat Zhang P, Zhang Z, Li W (2013) Antibacterial TiO2 coating incorporating silver nanoparticles by microarc oxidation and ion implantation. J Nanomater 2013:1–8 Zhang P, Zhang Z, Li W (2013) Antibacterial TiO2 coating incorporating silver nanoparticles by microarc oxidation and ion implantation. J Nanomater 2013:1–8
138.
Zurück zum Zitat Xu R, Yang X, Jiang J, Li P, Zhang X, Wu G, Chu PK (2015) Effects of silver plasma immersion ion implantation on the surface characteristics and cytocompatibility of titanium nitride films. Surf Coat Technol 279:166–170CrossRef Xu R, Yang X, Jiang J, Li P, Zhang X, Wu G, Chu PK (2015) Effects of silver plasma immersion ion implantation on the surface characteristics and cytocompatibility of titanium nitride films. Surf Coat Technol 279:166–170CrossRef
139.
Zurück zum Zitat Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351CrossRef Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351CrossRef
140.
Zurück zum Zitat Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M (2014) ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25:115101 (12p)CrossRef Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M (2014) ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25:115101 (12p)CrossRef
141.
Zurück zum Zitat Liu W, Su P, Chen S, Wang N, Ma Y, Liu Y, Wang J, Zhang Z, Li H, Webster TJ (2014) Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6:9050–9062CrossRef Liu W, Su P, Chen S, Wang N, Ma Y, Liu Y, Wang J, Zhang Z, Li H, Webster TJ (2014) Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6:9050–9062CrossRef
142.
Zurück zum Zitat Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34:3467–3478CrossRef Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34:3467–3478CrossRef
143.
Zurück zum Zitat Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241CrossRef Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241CrossRef
144.
Zurück zum Zitat Khan MM, Ansari SA, Lee J, Cho MH (2013) Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater Sci Eng C 33:4692–4699CrossRef Khan MM, Ansari SA, Lee J, Cho MH (2013) Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater Sci Eng C 33:4692–4699CrossRef
145.
Zurück zum Zitat Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604CrossRef Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604CrossRef
Metadaten
Titel
Surface Treatments of Titanium with Antibacterial Agents for Implant Applications
verfasst von
Ingrid Milošev
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-31849-3_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.