Skip to main content

2020 | OriginalPaper | Buchkapitel

11. Survey of Low-Burn-Rate Solid Rocket Propellants

verfasst von : Adam Okniński, Paweł Nowakowski, Anna Kasztankiewicz

Erschienen in: Innovative Energetic Materials: Properties, Combustion Performance and Application

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents the topic of low-burn-rate composite solid rocket propellants. While the majority of presently developed systems require high burn rates, several applications benefit from propellants with decreased regression rates. This includes solid rocket motors as well as gas generators. Background descriptions of the general aspects that impact on the burn rate of composite propellants are provided. Focus is given to means that enable obtaining low regression rates. While operational chamber pressure and grain temperature enable burn rate adjustment, they are in a relatively narrow range for most applications. Temperature cannot be arbitrarily set because it is defined by the firing conditions for a given composition. As for pressure, its decrease leads to loss of performance and has a strong impact on the overall motor design, and may have to be avoided. Internal flow field optimization and inhibiting heat transfer into the propellant grain is also significant. However, for the most demanding applications, limiting or preventing propellant erosion is not a sufficient solution. Most importantly, burn rate moderation can be done via the use of coolants, which serve as the most popular burn rate suppressants. Over 100 additives, which were investigated worldwide are listed. Methods enabling burning moderation include influencing the kinetics of decomposition of the oxidizer and binder regression. Moreover, oxidizer particle size and packing are significant. Bimodal and trimodal oxidizer distributions are typically used. Particle dimensions, but also shape, impact on combustion. Also fuel particle size, shape, surface area and surface finishing are important for the regression rate. Furthermore, the use of alternative oxidizers to ammonium perchlorate may be considered. Challenges in development of low-burn-rate propellants are discussed. This includes obtaining necessary properties, performance and meeting system-level requirements for various applications. A review of historical developments of low-burn-rate propellants is given with information on the most recent advances. Compositions, their burn rate and performance, are discussed. Moreover, the impact of several low regression rate propellants on solid rocket motor design is provided. This includes material oxidation, nozzle erosion and expected heat loads. Finally, an outlook on further low-burn-rate propellant development and utilisation is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. John Wiley & Sons, s.l Agrawal JP (2010) High energy materials: propellants, explosives and pyrotechnics. John Wiley & Sons, s.l
2.
Zurück zum Zitat Akiba R, Inatani Y (1990) Alumina particles exhausted from soild-propellant rocket motor as a potential source of space debris. Inst Space Astronaut Sci 11:51 Akiba R, Inatani Y (1990) Alumina particles exhausted from soild-propellant rocket motor as a potential source of space debris. Inst Space Astronaut Sci 11:51
3.
Zurück zum Zitat Al-Harthi A, Williams A (1998) Effect of fuel binder and oxidiser particle diameter on the combustion of ammonium perchlorate based propellants. Fuel 77:1451–1468 Al-Harthi A, Williams A (1998) Effect of fuel binder and oxidiser particle diameter on the combustion of ammonium perchlorate based propellants. Fuel 77:1451–1468
4.
Zurück zum Zitat Améduri B, Sawada H (2016) Fluorinated polymers: volume 2: applications. Royal Society of Chemistry, s.l Améduri B, Sawada H (2016) Fluorinated polymers: volume 2: applications. Royal Society of Chemistry, s.l
5.
Zurück zum Zitat Atwood AI, Boggs TL, Curran PO, Parr TP, Hanson-Parr DM, Price CF, Wiknich J (1999) Burning rate of solid propellant ingredients, part 1: pressure and initial temperature effects. J Propul Power 15:740–747 Atwood AI, Boggs TL, Curran PO, Parr TP, Hanson-Parr DM, Price CF, Wiknich J (1999) Burning rate of solid propellant ingredients, part 1: pressure and initial temperature effects. J Propul Power 15:740–747
6.
Zurück zum Zitat Baek G, Yim Y-J (2005) Coolant effect on gas generator propellant. J Korean Soc Propuls Eng 9:1–8 Baek G, Yim Y-J (2005) Coolant effect on gas generator propellant. J Korean Soc Propuls Eng 9:1–8
7.
Zurück zum Zitat Bazaki H, Kubota N (2000) Effect of binders on the burning rate of AP composite propellants. Propellants Explos Pyrotech 25:312–316 Bazaki H, Kubota N (2000) Effect of binders on the burning rate of AP composite propellants. Propellants Explos Pyrotech 25:312–316
8.
Zurück zum Zitat Beckstead MW (1993) Solid propellant combustion mechanisms and flame structure. Pure Appl Chem 65:297–307 Beckstead MW (1993) Solid propellant combustion mechanisms and flame structure. Pure Appl Chem 65:297–307
9.
Zurück zum Zitat Behera S (2009) Effect of RDX on elongation properties of AP/HTPB based case bonded composite propellants. DRDO Sci Spectr, pp. 31–36 Behera S (2009) Effect of RDX on elongation properties of AP/HTPB based case bonded composite propellants. DRDO Sci Spectr, pp. 31–36
10.
Zurück zum Zitat Bellec R, Duterque J, Lengelle G (1996) Modeling of aluminized solid propellants. ONERA TR 37:7128 Bellec R, Duterque J, Lengelle G (1996) Modeling of aluminized solid propellants. ONERA TR 37:7128
11.
Zurück zum Zitat Bharti MK, Chalia S (2014) Stabilization of ammonium nitrate for phase modification (ll) by co-crystallization with copper (ll) nitrate (trihydrate). Int J Eng Res Gen Sci 2:518–522 Bharti MK, Chalia S (2014) Stabilization of ammonium nitrate for phase modification (ll) by co-crystallization with copper (ll) nitrate (trihydrate). Int J Eng Res Gen Sci 2:518–522
12.
Zurück zum Zitat Black R, Reed D, Brundige W (1979) MX transporter/launcher gas generators. s.l., s.n., p. 1323 Black R, Reed D, Brundige W (1979) MX transporter/launcher gas generators. s.l., s.n., p. 1323
13.
Zurück zum Zitat Boggs TL, Derr RL, Beckstead MW (1970) Surface structure of ammonium perchlorate composite propellants. AIAA J 8:370–372 Boggs TL, Derr RL, Beckstead MW (1970) Surface structure of ammonium perchlorate composite propellants. AIAA J 8:370–372
14.
Zurück zum Zitat Boldyrev VV (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443:1–36 Boldyrev VV (2006) Thermal decomposition of ammonium perchlorate. Thermochim Acta 443:1–36
15.
Zurück zum Zitat Bozic V (2010) Effects of burning rate modifiers on the modified polyvinyl chloride-based propellants. s.l., s.n., pp 1–6 Bozic V (2010) Effects of burning rate modifiers on the modified polyvinyl chloride-based propellants. s.l., s.n., pp 1–6
16.
Zurück zum Zitat Bozic VS, Milos MV (2001) Effects of oxidizer particle size on propellants based on modified polyvinyl chloride. J Propul Power 17:1012–1016 Bozic VS, Milos MV (2001) Effects of oxidizer particle size on propellants based on modified polyvinyl chloride. J Propul Power 17:1012–1016
17.
Zurück zum Zitat Brill TB, Ren W-Z, Yang V (2000) Solid propellant chemistry, combustion, and motor interior ballistics. American Institute of Aeronautics and Astronautics, s.l Brill TB, Ren W-Z, Yang V (2000) Solid propellant chemistry, combustion, and motor interior ballistics. American Institute of Aeronautics and Astronautics, s.l
18.
Zurück zum Zitat Burkhardt H et al (2002) Evaluation of propulsion systems for satellite end-of-life de-orbiting. s.l., s.n., p 4208 Burkhardt H et al (2002) Evaluation of propulsion systems for satellite end-of-life de-orbiting. s.l., s.n., p 4208
19.
Zurück zum Zitat Cai W, Thakre P, Yang V (2008) A model of AP/HTPB composite propellant combustion in rocket-motor environments. Combust Sci Technol 180:2143–2169 Cai W, Thakre P, Yang V (2008) A model of AP/HTPB composite propellant combustion in rocket-motor environments. Combust Sci Technol 180:2143–2169
20.
Zurück zum Zitat Caveny LH, Summerfield M, Strittmater RC, Barrows AW (1974) Solid propellant flammability including ignitability and combustion limits. Army Ballistic Research Lab Aberdeen Proving Ground MD, s.l Caveny LH, Summerfield M, Strittmater RC, Barrows AW (1974) Solid propellant flammability including ignitability and combustion limits. Army Ballistic Research Lab Aberdeen Proving Ground MD, s.l
21.
Zurück zum Zitat Cohen NS, Fleming RW, Derr RL (1974) Role of binders in solid propellant combustion. AIAA J 12:212–218 Cohen NS, Fleming RW, Derr RL (1974) Role of binders in solid propellant combustion. AIAA J 12:212–218
22.
Zurück zum Zitat Compton J, Theis C, Kurzeja S, McGarry J (1974) Five-minute rocket motor. s.l., s.n., p 1203 Compton J, Theis C, Kurzeja S, McGarry J (1974) Five-minute rocket motor. s.l., s.n., p 1203
23.
Zurück zum Zitat Croft HT, Falconer K, Guy RK (2012) Unsolved problems in geometry: unsolved problems in intuitive mathematics. Springer Science & Business Media, s.l Croft HT, Falconer K, Guy RK (2012) Unsolved problems in geometry: unsolved problems in intuitive mathematics. Springer Science & Business Media, s.l
24.
Zurück zum Zitat Curtis, D. D., 1986. Low burn rate motor propellant. US Patent No 4,632,715 Curtis, D. D., 1986. Low burn rate motor propellant. US Patent No 4,632,715
25.
Zurück zum Zitat Davenas A (2012) Solid rocket propulsion technology. Newnes, s.l Davenas A (2012) Solid rocket propulsion technology. Newnes, s.l
26.
Zurück zum Zitat DeLuca LT (2016) Innovative solid formulations for rocket propulsion. Eurasian Chem Technol J 18:181–196 DeLuca LT (2016) Innovative solid formulations for rocket propulsion. Eurasian Chem Technol J 18:181–196
27.
Zurück zum Zitat Denisyuk AP, Shepelev YG, Rusin DL, Shumskii IV (2001) Effect of RDX and HMX on the efficiency of catalysts for double-base propellant combustion. Combust Explos Shock Waves 37:190–196 Denisyuk AP, Shepelev YG, Rusin DL, Shumskii IV (2001) Effect of RDX and HMX on the efficiency of catalysts for double-base propellant combustion. Combust Explos Shock Waves 37:190–196
28.
Zurück zum Zitat Dey A, Ghorpade VG, Kumar A, Gupta M (2014) Biuret: a potential burning rate suppressant in ammonium chlorate (VII) based composite propellants. Cent Eur J Energ Mater 11 Dey A, Ghorpade VG, Kumar A, Gupta M (2014) Biuret: a potential burning rate suppressant in ammonium chlorate (VII) based composite propellants. Cent Eur J Energ Mater 11
29.
Zurück zum Zitat Dey A, Sikder AK, Talawar MB, Chottopadhyay S (2015) Towards new directions in oxidizers/energetic fillers for composite propellants: an overview. Cent Eur J Energ Mater 12 Dey A, Sikder AK, Talawar MB, Chottopadhyay S (2015) Towards new directions in oxidizers/energetic fillers for composite propellants: an overview. Cent Eur J Energ Mater 12
30.
Zurück zum Zitat Ender HH (1965) Coated ammonium perchlorate and propellant compositions. US Patent No 3,190,776 Ender HH (1965) Coated ammonium perchlorate and propellant compositions. US Patent No 3,190,776
31.
Zurück zum Zitat Eslami A, Hosseini SG, Bazrgary M (2013) Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim 113:721–730 Eslami A, Hosseini SG, Bazrgary M (2013) Improvement of thermal decomposition properties of ammonium perchlorate particles using some polymer coating agents. J Therm Anal Calorim 113:721–730
33.
Zurück zum Zitat Estec ESA (2013) ESA SPADES–assessment of solid propellant deorbit module CDF report. ESTEC, Noordwijk Estec ESA (2013) ESA SPADES–assessment of solid propellant deorbit module CDF report. ESTEC, Noordwijk
34.
Zurück zum Zitat Estec ESA (2017) European space agency clean sat concurrent engineering final presentation (public version). ESTEC, Noordwijk Estec ESA (2017) European space agency clean sat concurrent engineering final presentation (public version). ESTEC, Noordwijk
35.
Zurück zum Zitat Florczak B (2008) A comparison of properties of aluminized composite propellants containing HMX and FOX-7. Cent Eur J Energ Mater 5:103–111 Florczak B (2008) A comparison of properties of aluminized composite propellants containing HMX and FOX-7. Cent Eur J Energ Mater 5:103–111
36.
Zurück zum Zitat Fong CW, Smith RF (1987) The relationship between plateau burning behavior and ammonium perchlorate particle size in HTPB-AP composite propellants. Combust Flame 67:235–247 Fong CW, Smith RF (1987) The relationship between plateau burning behavior and ammonium perchlorate particle size in HTPB-AP composite propellants. Combust Flame 67:235–247
37.
Zurück zum Zitat Foster RL, Condon JA, Miller RR. (1982) Low exponent technology. Hercules Rep AFRPL-TR-81 95 Foster RL, Condon JA, Miller RR. (1982) Low exponent technology. Hercules Rep AFRPL-TR-81 95
38.
Zurück zum Zitat Frederick R, Osborn J (2000) Ballistic studies of wide distribution propellants. s.l., s.n., p 3318 Frederick R, Osborn J (2000) Ballistic studies of wide distribution propellants. s.l., s.n., p 3318
39.
Zurück zum Zitat Gettwert V, Tagliabue C, Weiser V, Imiolek A (2015) Green advanced high energy propellants for launchers (GRAIL)-first results on the burning behavior of AN/ADN propellants. s.l., s.n Gettwert V, Tagliabue C, Weiser V, Imiolek A (2015) Green advanced high energy propellants for launchers (GRAIL)-first results on the burning behavior of AN/ADN propellants. s.l., s.n
40.
Zurück zum Zitat Ghorpade VG et al (2010) Study of burn rate suppressants in AP-based composite propellants. Propellants Explos Pyrotech Int J Deal Sci Technol Asp Energ Mater 35:53–56 Ghorpade VG et al (2010) Study of burn rate suppressants in AP-based composite propellants. Propellants Explos Pyrotech Int J Deal Sci Technol Asp Energ Mater 35:53–56
41.
Zurück zum Zitat Glaskova AP (1975) Three possible ways to inhibit the ammonium perchlorate combustion process. AIAA J 13:438–442 Glaskova AP (1975) Three possible ways to inhibit the ammonium perchlorate combustion process. AIAA J 13:438–442
42.
Zurück zum Zitat Glazkova AP (1974) Inhibition of the effect of reducing agents on the combustion of ammonium perchlorate. Combust Explos Shock Waves 10:179–183 Glazkova AP (1974) Inhibition of the effect of reducing agents on the combustion of ammonium perchlorate. Combust Explos Shock Waves 10:179–183
43.
Zurück zum Zitat Glazkova AN, Popova PP (1968) Inhibitors of combustion and ammonium nitrate and ammonium perchlorate and their mixtures. Foreign Technology Div Wright-Patterson Afb Oh, s.l Glazkova AN, Popova PP (1968) Inhibitors of combustion and ammonium nitrate and ammonium perchlorate and their mixtures. Foreign Technology Div Wright-Patterson Afb Oh, s.l
44.
Zurück zum Zitat Gleghorn G et al (1995) Orbital debris: a technical assessment. s.l.:s.n Gleghorn G et al (1995) Orbital debris: a technical assessment. s.l.:s.n
45.
Zurück zum Zitat Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis, s.l.: s.n Gordon S, McBride BJ (1994) Computer program for calculation of complex chemical equilibrium compositions and applications. Part 1: Analysis, s.l.: s.n
46.
Zurück zum Zitat Guirao C, Williams FA (1971) A model of ammonium perchlorate deflagration between 20 and 100 atm. AIAA J 9:1345–1356 Guirao C, Williams FA (1971) A model of ammonium perchlorate deflagration between 20 and 100 atm. AIAA J 9:1345–1356
47.
Zurück zum Zitat Gupta G, Jawale L, Mehilal D, Bhattacharya B (2015) Various methods for the determination of the burning rates of solid propellants: an overview. Cent Eur J Energ Mater 12 Gupta G, Jawale L, Mehilal D, Bhattacharya B (2015) Various methods for the determination of the burning rates of solid propellants: an overview. Cent Eur J Energ Mater 12
48.
Zurück zum Zitat Hayakawa S, Nakao C, Tanaka M (2000) An effect of oxidizer particle size on combustion stability in composite propellants. s.l., s.n., p 3700 Hayakawa S, Nakao C, Tanaka M (2000) An effect of oxidizer particle size on combustion stability in composite propellants. s.l., s.n., p 3700
49.
Zurück zum Zitat Hentschel ML, Page NW (2003) Selection of descriptors for particle shape characterization. Part Part Syst Charact Meas Descr Part Prop Behav Powders Other Disperse Syst 20:25–38 Hentschel ML, Page NW (2003) Selection of descriptors for particle shape characterization. Part Part Syst Charact Meas Descr Part Prop Behav Powders Other Disperse Syst 20:25–38
50.
Zurück zum Zitat Humphrey MF (1971) Solid propellant burning-rate modification. Propuls div 1 Humphrey MF (1971) Solid propellant burning-rate modification. Propuls div 1
51.
Zurück zum Zitat Hunley J (1999) The history of solid-propellant rocketry-What we do and do not know. s.l., s.n., p 2925 Hunley J (1999) The history of solid-propellant rocketry-What we do and do not know. s.l., s.n., p 2925
52.
Zurück zum Zitat Isert S et al (2016) Near-surface flame structure characterization of simplified ammonium perchlorate/hydroxyl-terminated polybutadiene compositions. Combust Flame 164:201–211 Isert S et al (2016) Near-surface flame structure characterization of simplified ammonium perchlorate/hydroxyl-terminated polybutadiene compositions. Combust Flame 164:201–211
53.
Zurück zum Zitat Isert S, Hedman TD, Lucht RP, Son SF (2016) Oxidizer coarse-to-fine ratio effect on microscale flame structure in a bimodal composite propellant. Combust Flame 163:406–413 Isert S, Hedman TD, Lucht RP, Son SF (2016) Oxidizer coarse-to-fine ratio effect on microscale flame structure in a bimodal composite propellant. Combust Flame 163:406–413
54.
Zurück zum Zitat Isert S, Son SF (2017) The relationship between flame structure and burning rate for ammonium perchlorate composite propellants. In: Energetic materials. Springer, s.l, pp 171–211 Isert S, Son SF (2017) The relationship between flame structure and burning rate for ammonium perchlorate composite propellants. In: Energetic materials. Springer, s.l, pp 171–211
55.
Zurück zum Zitat Jain S et al (2009) Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def Sci J 59:294–299 Jain S et al (2009) Size and shape of ammonium perchlorate and their influence on properties of composite propellant. Def Sci J 59:294–299
56.
Zurück zum Zitat Janovsky R (2002) End-of-life de-orbiting strategies for satellites. s.l., s.n., p IAA. 5.4. 05 Janovsky R (2002) End-of-life de-orbiting strategies for satellites. s.l., s.n., p IAA. 5.4. 05
57.
Zurück zum Zitat Jensen TL, Unneberg E, Kristensen TE (2017) Smokeless GAP-RDX composite rocket propellants containing diaminodinitroethylene (FOX-7). Propellants Explos Pyrotech 42:381–385 Jensen TL, Unneberg E, Kristensen TE (2017) Smokeless GAP-RDX composite rocket propellants containing diaminodinitroethylene (FOX-7). Propellants Explos Pyrotech 42:381–385
58.
Zurück zum Zitat Jeppson M, Beckstead M, Jing Q (1998) A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. s.l., s.n., p 447 Jeppson M, Beckstead M, Jing Q (1998) A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. s.l., s.n., p 447
59.
Zurück zum Zitat Jolley WH, Hooper JF, Hilton PR, Bradfield WA (1986) Studies on coning in end-burning rocket motors. J Propul Power 2:223–227 Jolley WH, Hooper JF, Hilton PR, Bradfield WA (1986) Studies on coning in end-burning rocket motors. J Propul Power 2:223–227
60.
Zurück zum Zitat King MK (1993) Erosive burning of solid propellants. J Propul Power 9:785–805 King MK (1993) Erosive burning of solid propellants. J Propul Power 9:785–805
61.
Zurück zum Zitat King MK (1981) Experimental and theoretical study of the effects of pressure and crossflow velocity on composite propellant burning rate. Elsevier, s.l, pp 207–216 King MK (1981) Experimental and theoretical study of the effects of pressure and crossflow velocity on composite propellant burning rate. Elsevier, s.l, pp 207–216
62.
Zurück zum Zitat Kirichenko AS et al (2014) ПPovysheniye effektivnosti RDTT na osnove razrabotki i realizatsii novykh proyektno-konstruktorskik GP KB Yuzhnoye (Improving the efficiency of solid propellant rocket motors based on the development and implementation of new design decisions of Yuzhnoye). Kosmicheskaya tekhnika. Raketnoye vooruzheniy, 89–96 Kirichenko AS et al (2014) ПPovysheniye effektivnosti RDTT na osnove razrabotki i realizatsii novykh proyektno-konstruktorskik GP KB Yuzhnoye (Improving the efficiency of solid propellant rocket motors based on the development and implementation of new design decisions of Yuzhnoye). Kosmicheskaya tekhnika. Raketnoye vooruzheniy, 89–96
63.
Zurück zum Zitat Kishore K, Sridhara K (1999) Solid propellant chemistry: condensed phase behaviour of ammonium perchlorate-based solid propellants. Def Res Develop Organ Minist Def, s.l Kishore K, Sridhara K (1999) Solid propellant chemistry: condensed phase behaviour of ammonium perchlorate-based solid propellants. Def Res Develop Organ Minist Def, s.l
64.
Zurück zum Zitat Kohga M (2008) Burning rate characteristics of ammonium perchloarte-based composite propellant using bimodal ammonium perchlorate. J Propul Power 24:499–506 Kohga M (2008) Burning rate characteristics of ammonium perchloarte-based composite propellant using bimodal ammonium perchlorate. J Propul Power 24:499–506
65.
Zurück zum Zitat Kohga M (2011) Burning characteristics and thermochemical behavior of AP/HTPB composite propellant using coarse and fine AP particles. Propellants Explos Pyrotech 36:57–64 Kohga M (2011) Burning characteristics and thermochemical behavior of AP/HTPB composite propellant using coarse and fine AP particles. Propellants Explos Pyrotech 36:57–64
66.
Zurück zum Zitat Kohga M, Naya T, Okamoto K (2012) Burning characteristics of Ammonium-Nitrate-Based composite propellants with a Hydroxyl-Terminated Polybutadiene/Polytetrahydrofuran blend binder. Int J Aerosp Eng 2012 Kohga M, Naya T, Okamoto K (2012) Burning characteristics of Ammonium-Nitrate-Based composite propellants with a Hydroxyl-Terminated Polybutadiene/Polytetrahydrofuran blend binder. Int J Aerosp Eng 2012
67.
Zurück zum Zitat Komarov VF (1999) Catalysis and inhibition of the combustion of ammonium perchlorate based solid propellants. Combust Explos Shock Waves 35:670–683 Komarov VF (1999) Catalysis and inhibition of the combustion of ammonium perchlorate based solid propellants. Combust Explos Shock Waves 35:670–683
68.
Zurück zum Zitat Korobeinichev OP, Anisiforov GI, Shkarin AV (1973) Kinetics of catalytic decomposition of ammonium perchlorate and its mixtures with polystyrene. Combust Explos Shock Waves 9:54–60 Korobeinichev OP, Anisiforov GI, Shkarin AV (1973) Kinetics of catalytic decomposition of ammonium perchlorate and its mixtures with polystyrene. Combust Explos Shock Waves 9:54–60
69.
Zurück zum Zitat Krowicki K, Syczewski M (1967) Solid rocket propellants (stale paliwa rakietowe). Foreign Technology Div Wright-Patterson Afb Oh, s.l Krowicki K, Syczewski M (1967) Solid rocket propellants (stale paliwa rakietowe). Foreign Technology Div Wright-Patterson Afb Oh, s.l
70.
Zurück zum Zitat Kubota N (2015) Propellants and explosives: thermochemical aspects of combustion. John Wiley & Sons, s.l Kubota N (2015) Propellants and explosives: thermochemical aspects of combustion. John Wiley & Sons, s.l
71.
Zurück zum Zitat Kubota N, Sonobe T, Yamamoto A, Shimizu H (1990) Burning rate characteristics of GAP propellants. J Propul Power 6:686–689 Kubota N, Sonobe T, Yamamoto A, Shimizu H (1990) Burning rate characteristics of GAP propellants. J Propul Power 6:686–689
72.
Zurück zum Zitat Kubota N, Hirata N (1985) Inhibition reaction of LiF on the combustion of ammonium perchlorate propellants. Elsevier, s.l., pp 2051–2056 Kubota N, Hirata N (1985) Inhibition reaction of LiF on the combustion of ammonium perchlorate propellants. Elsevier, s.l., pp 2051–2056
73.
Zurück zum Zitat Kumar P, Kumar M, Lakra R (2018) Effect of catalysts on the burning rate of phase stabilized ammonium nitrate based composite propellants. IOP Publishing, s.l, p 012022 Kumar P, Kumar M, Lakra R (2018) Effect of catalysts on the burning rate of phase stabilized ammonium nitrate based composite propellants. IOP Publishing, s.l, p 012022
74.
Zurück zum Zitat Kuo KK (1984) Fundamentals of solid-propellant combustion. American Institute of Aeronautics and Astronautics, s.l Kuo KK (1984) Fundamentals of solid-propellant combustion. American Institute of Aeronautics and Astronautics, s.l
75.
Zurück zum Zitat Kuwahara T, Kubota N (1986) Low pressure burning of ammonium perchlorate composite propellants. Combust Sci Technol 47:81–91 Kuwahara T, Kubota N (1986) Low pressure burning of ammonium perchlorate composite propellants. Combust Sci Technol 47:81–91
76.
Zurück zum Zitat Lee S, Hong S, Yoo K (1993) Experimental studies relating to the combustion microstructure in heterogeneous propellants. s.l., s.n., p 1753 Lee S, Hong S, Yoo K (1993) Experimental studies relating to the combustion microstructure in heterogeneous propellants. s.l., s.n., p 1753
77.
Zurück zum Zitat Maggi F, Garg P (2018) Fragmentation of ammonium nitrate particles under thermal cycling. Propellants Explos Pyrotech 43:315–319 Maggi F, Garg P (2018) Fragmentation of ammonium nitrate particles under thermal cycling. Propellants Explos Pyrotech 43:315–319
78.
Zurück zum Zitat Maksimowski P, Kasztankiewicz AB, Kopacz W (2017) 3, 3-Bis (azidomethyl) oxetane (BAMO) synthesis via pentaerythritol tosyl derivates. Propellants Explos Pyrotech 42:1020–1026 Maksimowski P, Kasztankiewicz AB, Kopacz W (2017) 3, 3-Bis (azidomethyl) oxetane (BAMO) synthesis via pentaerythritol tosyl derivates. Propellants Explos Pyrotech 42:1020–1026
79.
Zurück zum Zitat Manash A, Kumar P (2019) Comparison of burn rate and thermal decomposition of AP as oxidizer and PVC and HTPB as fuel binder based composite solid propellants. Def Technol 15:227–232 Manash A, Kumar P (2019) Comparison of burn rate and thermal decomposition of AP as oxidizer and PVC and HTPB as fuel binder based composite solid propellants. Def Technol 15:227–232
80.
Zurück zum Zitat Mangum GF, Rogers RE, Schreck EJ (1976) Method for making coated ultra-fine ammonium perchlorate particles and product produced thereby. US Patent No 3,954,526 Mangum GF, Rogers RE, Schreck EJ (1976) Method for making coated ultra-fine ammonium perchlorate particles and product produced thereby. US Patent No 3,954,526
81.
Zurück zum Zitat Mathesius KJ, Hansman RJ (2019) Manufacturing methods for a solid rocket motor propelling a small, fast flight vehicle, s.l.: s.n Mathesius KJ, Hansman RJ (2019) Manufacturing methods for a solid rocket motor propelling a small, fast flight vehicle, s.l.: s.n
82.
Zurück zum Zitat Messner A (1980) Transient coning in end-burning solid propellant grains. s.l., s.n., p 1138 Messner A (1980) Transient coning in end-burning solid propellant grains. s.l., s.n., p 1138
83.
Zurück zum Zitat Meyer R, Köhler J, Homburg A, (2016) Explosives. Wiley Meyer R, Köhler J, Homburg A, (2016) Explosives. Wiley
84.
Zurück zum Zitat Miller MS, Holmes HE (1988) An Experimental Determination of Subatmospheric Burning Rates and Critical Diameters for AP/HTPB Propellant. Army Ballistic Research Lab Aberdeen Proving Ground MD, s.l Miller MS, Holmes HE (1988) An Experimental Determination of Subatmospheric Burning Rates and Critical Diameters for AP/HTPB Propellant. Army Ballistic Research Lab Aberdeen Proving Ground MD, s.l
85.
Zurück zum Zitat Miller MS, Holmes HE (1990) Subatmospheric burning rates and critical diameters for AP/HTPB propellant. J Propul Power 6:671–672 Miller MS, Holmes HE (1990) Subatmospheric burning rates and critical diameters for AP/HTPB propellant. J Propul Power 6:671–672
86.
Zurück zum Zitat Miller R (1982) Effects of particle size on reduced smoke propellant ballistics. s.l., s.n., p 1096 Miller R (1982) Effects of particle size on reduced smoke propellant ballistics. s.l., s.n., p 1096
87.
Zurück zum Zitat Miyata K, Kubota N (1990) Inhibition reaction of SrCO3 on the burning rate of ammonium perchlorate propellants. Propellants Explos Pyrotech 15:127–131 Miyata K, Kubota N (1990) Inhibition reaction of SrCO3 on the burning rate of ammonium perchlorate propellants. Propellants Explos Pyrotech 15:127–131
88.
Zurück zum Zitat Morrow GR (2017) Correlating the effects of AP particle size and concentration on AP/HTPB composite propellant burning rates, s.l.: s.n Morrow GR (2017) Correlating the effects of AP particle size and concentration on AP/HTPB composite propellant burning rates, s.l.: s.n
89.
Zurück zum Zitat Mulrooney M (2004) An assessment of the role of solid rocket motors in the generation of orbital debris, s.l.: s.n Mulrooney M (2004) An assessment of the role of solid rocket motors in the generation of orbital debris, s.l.: s.n
90.
Zurück zum Zitat Nagamachi, M. Y., Oliveira, J. I. S., Kawamoto, A. M. & Dutra, R. d. C. L., 2009. ADN-The new oxidizer around the corner for an environmentally friendly smokeless propellant. Journal of Aerospace Technology and Management, Volume 1, pp. 153-160 Nagamachi, M. Y., Oliveira, J. I. S., Kawamoto, A. M. & Dutra, R. d. C. L., 2009. ADN-The new oxidizer around the corner for an environmentally friendly smokeless propellant. Journal of Aerospace Technology and Management, Volume 1, pp. 153-160
91.
Zurück zum Zitat Nair UR et al (2005) Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations. Combustion Explosion Shock Waves 41:121–132 Nair UR et al (2005) Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations. Combustion Explosion Shock Waves 41:121–132
92.
Zurück zum Zitat Nandagopal S et al (2009) Effect of coating of ammonium perchlorate with fluorocarbon on ballistic and sensitivity properties of AP/Al/HTPB propellant. Propellants Explos Pyrotech Int J Deal Sci Technol Asp Energ Mater 34:526–531 Nandagopal S et al (2009) Effect of coating of ammonium perchlorate with fluorocarbon on ballistic and sensitivity properties of AP/Al/HTPB propellant. Propellants Explos Pyrotech Int J Deal Sci Technol Asp Energ Mater 34:526–531
93.
Zurück zum Zitat Naumann KW, Weigand A, Ringeisen A (2019) Solid rocket motors for the de-orbiting of satellites. In: 8th European conference for aeronautics and space sciences, Madrid Naumann KW, Weigand A, Ringeisen A (2019) Solid rocket motors for the de-orbiting of satellites. In: 8th European conference for aeronautics and space sciences, Madrid
94.
Zurück zum Zitat Northrop Carolina INC., (1965. Dual-chamber controllable solid propellant rocket motor. Volume I - research and development efforts, PN, Asheville, NC Northrop Carolina INC., (1965. Dual-chamber controllable solid propellant rocket motor. Volume I - research and development efforts, PN, Asheville, NC
96.
Zurück zum Zitat Nowakowski P et al (2019) Space debris mitigation using dedicated solid rocket motor. In: 8th European conference for aeronautics and space sciences, Madrid Nowakowski P et al (2019) Space debris mitigation using dedicated solid rocket motor. In: 8th European conference for aeronautics and space sciences, Madrid
97.
Zurück zum Zitat Nowakowski P et al (2018) Challenges of developing a solid rocket motor for direct deorbitation. In: 69th International astronautical congress, Bremen Nowakowski P et al (2018) Challenges of developing a solid rocket motor for direct deorbitation. In: 69th International astronautical congress, Bremen
98.
Zurück zum Zitat Nowakowski P et al (2017). Design of a solid rocket motor for controlled deorbitation. s.l., s.n., p 5083 Nowakowski P et al (2017). Design of a solid rocket motor for controlled deorbitation. s.l., s.n., p 5083
99.
Zurück zum Zitat Okniński A (2017) Multi disciplinary optimisation of single-stage sounding rockets using solid propulsion. Aerosp Sci Technol 71:412–419 Okniński A (2017) Multi disciplinary optimisation of single-stage sounding rockets using solid propulsion. Aerosp Sci Technol 71:412–419
100.
Zurück zum Zitat Okniński A et al (2016) Development of aluminium-free propellants and solid rocket motors for deorbiting applications in poland. Noordwijk, ESA, 1st Clean Space Industrial Days Okniński A et al (2016) Development of aluminium-free propellants and solid rocket motors for deorbiting applications in poland. Noordwijk, ESA, 1st Clean Space Industrial Days
101.
Zurück zum Zitat Oommen C, Jain SR (1999) Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater 67:253–281 Oommen C, Jain SR (1999) Ammonium nitrate: a promising rocket propellant oxidizer. J Hazard Mater 67:253–281
102.
Zurück zum Zitat Östmark H, Bemm U, Langlet A, Sandén, R, Wingborg, N (2000) The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater 18(2–3):123–138 Östmark H, Bemm U, Langlet A, Sandén, R, Wingborg, N (2000) The properties of ammonium dinitramide (ADN): part 1, basic properties and spectroscopic data. J Energ Mater 18(2–3):123–138
104.
Zurück zum Zitat Pakosz M et al (2017) Development of a solid rocket motor for an active deorbitation system. 68th international astronautical congress, Adelaide Pakosz M et al (2017) Development of a solid rocket motor for an active deorbitation system. 68th international astronautical congress, Adelaide
105.
Zurück zum Zitat Parhi A et al (2015) Challenges in the development of a slow burning solid rocket booster. Aerosp Sci Technol 43:437–444 Parhi A et al (2015) Challenges in the development of a slow burning solid rocket booster. Aerosp Sci Technol 43:437–444
106.
Zurück zum Zitat Parhi A et al (2018) Development of slow-burning solid rocket booster for RLV-TD hypersonic experiment. Curr Sci 114(1):74–83 Parhi A et al (2018) Development of slow-burning solid rocket booster for RLV-TD hypersonic experiment. Curr Sci 114(1):74–83
108.
Zurück zum Zitat Poulter LW, Nelson RW, Smalley Jr RB, Hawkins MC (1998) Robust propellant liner and interfacial propellant burn rate control. US Patent No 5,767,221 Poulter LW, Nelson RW, Smalley Jr RB, Hawkins MC (1998) Robust propellant liner and interfacial propellant burn rate control. US Patent No 5,767,221
109.
Zurück zum Zitat Reshmi SK, Ninan KN, Varghese TL (2012) A slow burn propellant composition with high performance characteristics. Patent No, India, p 250645 Reshmi SK, Ninan KN, Varghese TL (2012) A slow burn propellant composition with high performance characteristics. Patent No, India, p 250645
110.
Zurück zum Zitat Rocco JAFF et al (2004) TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim 77:803–813 Rocco JAFF et al (2004) TG studies of a composite solid rocket propellant based on HTPB-binder. J Therm Anal Calorim 77:803–813
111.
Zurück zum Zitat Rochford EE (1999) Temperature sensitivity measurements of solid rocket propellants. s.l.: s.n Rochford EE (1999) Temperature sensitivity measurements of solid rocket propellants. s.l.: s.n
112.
Zurück zum Zitat Rodic V, Bajlovski M (2006) Influence of trimodal fraction mixture of ammonium-perchlorate on characteristics of composite rocket propellants. Sci Technol Rev Rodic V, Bajlovski M (2006) Influence of trimodal fraction mixture of ammonium-perchlorate on characteristics of composite rocket propellants. Sci Technol Rev
113.
Zurück zum Zitat Rodić V (2012) Effect of titanium (IV) oxide on composite solid propellant properties. Sci Tech Rev 62:21–27 Rodić V (2012) Effect of titanium (IV) oxide on composite solid propellant properties. Sci Tech Rev 62:21–27
114.
Zurück zum Zitat Sayles DC (1983) Increasing burning rate of solid propellants by electric field effects. US Patent No 4,410,470 Sayles DC (1983) Increasing burning rate of solid propellants by electric field effects. US Patent No 4,410,470
115.
Zurück zum Zitat Schonenborg R (2004) Solid propellant de-orbiting for constellation satellites. s.l., s.n Schonenborg R (2004) Solid propellant de-orbiting for constellation satellites. s.l., s.n
116.
Zurück zum Zitat Schonenborg RAC, Schoyer HFR (2009) Solid propulsion de-orbiting and re-orbiting. s.l., s.n Schonenborg RAC, Schoyer HFR (2009) Solid propulsion de-orbiting and re-orbiting. s.l., s.n
117.
Zurück zum Zitat Sell T, Vyazovkin S, Wight CA (1999) Thermal decomposition kinetics of PBAN-binder and composite solid rocket propellants. Combust Flame 119:174–181 Sell T, Vyazovkin S, Wight CA (1999) Thermal decomposition kinetics of PBAN-binder and composite solid rocket propellants. Combust Flame 119:174–181
118.
Zurück zum Zitat Shafer JI, Strand LD, Robertson FA (1971) Low acceleration rate ignition for spacecraft. JPL Q Tech Rev 1:35 Shafer JI, Strand LD, Robertson FA (1971) Low acceleration rate ignition for spacecraft. JPL Q Tech Rev 1:35
119.
Zurück zum Zitat Shorr M, Zaehringer AJ (1967) Solid rocket technology. In: Shorr M, Zaehringer AJ (eds). John Wiley & Sons Inc, s.l Shorr M, Zaehringer AJ (1967) Solid rocket technology. In: Shorr M, Zaehringer AJ (eds). John Wiley & Sons Inc, s.l
120.
Zurück zum Zitat Slisarenko VF (2016) Osobennosti razrabotki organov upravleniya vektorom tyagi RDTT v KB-5 (Features of the development of the thrust vector control subsystem of solid propellant rocket motors in KB-5). Space technology. Missile weapons, pp 97–104 Slisarenko VF (2016) Osobennosti razrabotki organov upravleniya vektorom tyagi RDTT v KB-5 (Features of the development of the thrust vector control subsystem of solid propellant rocket motors in KB-5). Space technology. Missile weapons, pp 97–104
121.
Zurück zum Zitat Solymosi F, Gera L, Börcsök S (1971) Catalytic pyrolysis of HC1O4 and its relation to the decomposition and combustion of NH4ClO4. Elsevier, s.l, pp 1009–1017 Solymosi F, Gera L, Börcsök S (1971) Catalytic pyrolysis of HC1O4 and its relation to the decomposition and combustion of NH4ClO4. Elsevier, s.l, pp 1009–1017
122.
Zurück zum Zitat Son SF, Berghout HL, Bolme CA, Chavez DE, Naud D, Hiskey, MA (2000) Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc Combust Inst 28(1):919–924 Son SF, Berghout HL, Bolme CA, Chavez DE, Naud D, Hiskey, MA (2000) Burn rate measurements of HMX, TATB, DHT, DAAF, and BTATz. Proc Combust Inst 28(1):919–924
123.
Zurück zum Zitat Summerfield M (1960) Solid propellant rocket research. American Institute of Aeronautics and Astronautics, s.l Summerfield M (1960) Solid propellant rocket research. American Institute of Aeronautics and Astronautics, s.l
124.
Zurück zum Zitat Sun Y-L, Li S-F, Ding D-H (2006) Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim 86:497–503 Sun Y-L, Li S-F, Ding D-H (2006) Effect of ammonium oxalate/strontium carbonate on the burning rate characteristics of composite propellants. J Therm Anal Calorim 86:497–503
125.
Zurück zum Zitat Survase DV, Gupta M, Asthana SN (2002) The effect of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants. Prog Cryst Growth Charact Mater 45:161–165 Survase DV, Gupta M, Asthana SN (2002) The effect of Nd2O3 on thermal and ballistic properties of ammonium perchlorate (AP) based composite propellants. Prog Cryst Growth Charact Mater 45:161–165
126.
Zurück zum Zitat Sutton GP, Biblarz O (2016) Rocket propulsion elements. John Wiley & Sons, s.l Sutton GP, Biblarz O (2016) Rocket propulsion elements. John Wiley & Sons, s.l
127.
Zurück zum Zitat Sutton ES, Vriesen CW (1979) Gas generator propellants for aerospace applications. s.l, s.n, p 1325 Sutton ES, Vriesen CW (1979) Gas generator propellants for aerospace applications. s.l, s.n, p 1325
128.
Zurück zum Zitat Sutton ES, Vriesen CW, Pacanowsky EJ (1968) Gas generator propellants. In: Proceedings of the symposium on advanced propellant chemistry, pp 65–72 Sutton ES, Vriesen CW, Pacanowsky EJ (1968) Gas generator propellants. In: Proceedings of the symposium on advanced propellant chemistry, pp 65–72
129.
Zurück zum Zitat Tagliabue C et al (2016) Burning behavior of AN/ADN propellants. s.l., s.n., p 28 Tagliabue C et al (2016) Burning behavior of AN/ADN propellants. s.l., s.n., p 28
130.
Zurück zum Zitat Thomas JC, Morrow GR, Dillier CA, Petersen EL (2018) Comprehensive study of AP particle size and loading effects on the burning rates of composite AP/HTPB propellants. s.l., s.n., p 4874 Thomas JC, Morrow GR, Dillier CA, Petersen EL (2018) Comprehensive study of AP particle size and loading effects on the burning rates of composite AP/HTPB propellants. s.l., s.n., p 4874
131.
Zurück zum Zitat Thompson WW (1972) Suppressants for lowering propellant binder burning rate, s.l, s.n Thompson WW (1972) Suppressants for lowering propellant binder burning rate, s.l, s.n
132.
Zurück zum Zitat Trache D et al (2015) Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem Trache D et al (2015) Effect of amide-based compounds on the combustion characteristics of composite solid rocket propellants. Arab J Chem
134.
Zurück zum Zitat Van der Heijden AEDM, Leeuwenburgh AB (2009) HNF/HTPB propellants: influence of HNF particle size on ballistic properties. Combust Flame 156:1359–1364 Van der Heijden AEDM, Leeuwenburgh AB (2009) HNF/HTPB propellants: influence of HNF particle size on ballistic properties. Combust Flame 156:1359–1364
135.
Zurück zum Zitat Vernacchia MT (2017) Development, modeling and testing of a slow-burning solid rocket propulsion system, s.l.: s.n Vernacchia MT (2017) Development, modeling and testing of a slow-burning solid rocket propulsion system, s.l.: s.n
136.
Zurück zum Zitat Wiedemann C et al (2009) Additional historical solid rocket motor burns. Acta Astronaut 64:1276–1285 Wiedemann C et al (2009) Additional historical solid rocket motor burns. Acta Astronaut 64:1276–1285
137.
Zurück zum Zitat Yaman H, Çelik V, Değirmenci E (2014) Experimental investigation of the factors affecting the burning rate of solid rocket propellants. Fuel 115:794–803 Yaman H, Çelik V, Değirmenci E (2014) Experimental investigation of the factors affecting the burning rate of solid rocket propellants. Fuel 115:794–803
138.
Zurück zum Zitat Young GHS (1960) Methods op burnins rate control in solid propellants. In: The chemistry of propellants. Elsevier, s.l., pp 285–302 Young GHS (1960) Methods op burnins rate control in solid propellants. In: The chemistry of propellants. Elsevier, s.l., pp 285–302
141.
Zurück zum Zitat Zhang L, Tian R, Zhang Z (2017) Burning rate of AP/HTPB base-bleed composite propellant under free ambient pressure. Aerosp Sci Technol 62:31–35 Zhang L, Tian R, Zhang Z (2017) Burning rate of AP/HTPB base-bleed composite propellant under free ambient pressure. Aerosp Sci Technol 62:31–35
142.
Zurück zum Zitat Zhang J, Guo T, Wang T, Xu D (2019) Thermal decomposition characteristics of mixtures of ammonium dinitramide and additives. In: Conference of the Fraunhofer ICT, June 25–28, Karlsruhe, Germany Zhang J, Guo T, Wang T, Xu D (2019) Thermal decomposition characteristics of mixtures of ammonium dinitramide and additives. In: Conference of the Fraunhofer ICT, June 25–28, Karlsruhe, Germany
Metadaten
Titel
Survey of Low-Burn-Rate Solid Rocket Propellants
verfasst von
Adam Okniński
Paweł Nowakowski
Anna Kasztankiewicz
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4831-4_11