Skip to main content
Erschienen in: Journal of Nanoparticle Research 3/2013

01.03.2013 | Research Paper

Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications

verfasst von: Daniele Nuvoli, Valeria Alzari, Roberta Sanna, Sergio Scognamillo, Jenny Alongi, Giulio Malucelli, Alberto Mariani

Erschienen in: Journal of Nanoparticle Research | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, graphene-based nanocomposites containing different amounts of nanofiller dispersed into Bis-GMA/tetraethyleneglycol diacrylate (Bis-GMA/TEGDA) polymer matrix have been prepared. In particular, the graphene dispersions, produced at high concentration (up to 6 mg/ml) by simple sonication of graphite in TEGDA monomer, have been used for the direct preparation of nanocomposite copolymers with Bis-GMA. The morphology of the obtained nanocomposites has been investigated as well as their thermal and mechanical properties. SEM analyses have clearly shown that graphene deeply interacts with the polymer matrix, thus resulting in a reinforcing effect on the material as proved by compression and hardness tests; at variance, graphene does not seem to affect the glass transition temperature of the obtained polymer networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS (2007) Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering vol 3. University of Oulu, Oulu, Finland Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS (2007) Smart polymers and their applications as biomaterials. In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering vol 3. University of Oulu, Oulu, Finland
Zurück zum Zitat Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64:768–771CrossRef Aizawa T, Souda R, Otani S, Ishizawa Y, Oshima C (1990) Anomalous bond of monolayer graphite on transition-metal carbide surfaces. Phys Rev Lett 64:768–771CrossRef
Zurück zum Zitat Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A (2011a) Graphene-containing nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733CrossRef Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Gioffredi E, Malucelli G, Marceddu S, Sechi M, Sanna V, Mariani A (2011a) Graphene-containing nanocomposite hydrogels of poly(N-isopropylacrylamide) prepared by frontal polymerization. J Mater Chem 21:8727–8733CrossRef
Zurück zum Zitat Alzari V, Nuvoli D, Sanna R, Scognamillo S, Piccinini M, Kenny JM, Malucelli G, Mariani A (2011b) In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. J Mater Chem 21:16544–16549CrossRef Alzari V, Nuvoli D, Sanna R, Scognamillo S, Piccinini M, Kenny JM, Malucelli G, Mariani A (2011b) In situ production of high filler content graphene-based polymer nanocomposites by reactive processing. J Mater Chem 21:16544–16549CrossRef
Zurück zum Zitat Ansari S, Giannelis EP (2009) Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897CrossRef Ansari S, Giannelis EP (2009) Functionalized graphene sheetpoly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897CrossRef
Zurück zum Zitat Antonucci JM, Stansbury JW (1997) Molecular designed dental polymer. In: Arshady R (ed) Desk reference of functional polymers: synthesis and application. American Chemical Society, Publication, pp 719–738 Antonucci JM, Stansbury JW (1997) Molecular designed dental polymer. In: Arshady R (ed) Desk reference of functional polymers: synthesis and application. American Chemical Society, Publication, pp 719–738
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Ning Lau C (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Ning Lau C (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907CrossRef
Zurück zum Zitat Ballo AM, Närhi TO, Akca EA, Ozenm T, Syrjänen SM, Lassila LVJ, Vallittu PK (2011) Prepolymerized vs. in situ-polymerized fiber-reinforced composite implants—a pilot study. J Dent Res 90:263–267CrossRef Ballo AM, Närhi TO, Akca EA, Ozenm T, Syrjänen SM, Lassila LVJ, Vallittu PK (2011) Prepolymerized vs. in situ-polymerized fiber-reinforced composite implants—a pilot study. J Dent Res 90:263–267CrossRef
Zurück zum Zitat Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196CrossRef
Zurück zum Zitat Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701CrossRef Boukhvalov DW, Katsnelson MI (2008) Modeling of graphite oxide. J Am Chem Soc 130:10697–10701CrossRef
Zurück zum Zitat Bowen RL (1962) Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bisphenol and glycidyl acrylate. U.S. Patent 3066112 Bowen RL (1962) Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bisphenol and glycidyl acrylate. U.S. Patent 3066112
Zurück zum Zitat Bowen RL (1963) Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc 66:57–64 Bowen RL (1963) Properties of a silica-reinforced polymer for dental restorations. J Am Dent Assoc 66:57–64
Zurück zum Zitat Bowen RL (1965) Method of preparing a monomer having phenoxy and methacrylate groups linked by hydroxy glycerol groups. U.S. Patent 3179623 Bowen RL (1965) Method of preparing a monomer having phenoxy and methacrylate groups linked by hydroxy glycerol groups. U.S. Patent 3179623
Zurück zum Zitat Chen M, Chen C, Hsu S, Sun SH, Su W (2005) Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 22:138–145CrossRef Chen M, Chen C, Hsu S, Sun SH, Su W (2005) Low shrinkage light curable nanocomposite for dental restorative material. Dent Mater 22:138–145CrossRef
Zurück zum Zitat Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22CrossRef Coleman JN (2013) Liquid exfoliation of defect-free graphene. Acc Chem Res 46:14–22CrossRef
Zurück zum Zitat Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351CrossRef Fan H, Wang L, Zhao K, Li N, Shi Z, Ge Z, Jin Z (2010) Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites. Biomacromolecules 11:2345–2351CrossRef
Zurück zum Zitat Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Phys Rev Lett 97:187401–187403CrossRef Ferrari AC, Meyer JC, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov KS, Roth S, Geim AK (2006) Quantifying defects in graphene via Raman spectroscopy at different excitation energies. Phys Rev Lett 97:187401–187403CrossRef
Zurück zum Zitat Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation-threshold of overlapping ellipsoids. Phys Rev E 52:819–828CrossRef Garboczi EJ, Snyder KA, Douglas JF, Thorpe MF (1995) Geometrical percolation-threshold of overlapping ellipsoids. Phys Rev E 52:819–828CrossRef
Zurück zum Zitat Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison JH, Scardaci V, Ferrari AC, Coleman JN (2008) High-yeld production of graphene by liquid-phase exfoliation of graphite. Nat Nantechnol 3:563–568CrossRef Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison JH, Scardaci V, Ferrari AC, Coleman JN (2008) High-yeld production of graphene by liquid-phase exfoliation of graphite. Nat Nantechnol 3:563–568CrossRef
Zurück zum Zitat Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef Khan U, O’Neill A, Lotya M, De S, Coleman JN (2010) High-concentration solvent exfoliation of graphene. Small 6:864–871CrossRef
Zurück zum Zitat Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077–9082CrossRef Khan U, Porwal H, O’Neill A, Nawaz K, May P, Coleman JN (2011) Solvent-exfoliated graphene at extremely high concentration. Langmuir 27:9077–9082CrossRef
Zurück zum Zitat Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer. nanocomposites. Macromolecules 43:6515–6530CrossRef Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer. nanocomposites. Macromolecules 43:6515–6530CrossRef
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388CrossRef
Zurück zum Zitat Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRef
Zurück zum Zitat Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3:538–542CrossRef Li X, Zhang G, Bai X, Sun X, Wang X, Wang E, Dai H (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3:538–542CrossRef
Zurück zum Zitat Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272CrossRef Lu X, Yu M, Huang H, Ruoff RS (1999) Tailoring graphite with the goal of achieving single sheets. Nanotechnology 10:269–272CrossRef
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669CrossRef
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRef
Zurück zum Zitat Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bittolo Bon S, Piccinini M, Illescas J, Mariani A (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21:3428–3431CrossRef Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bittolo Bon S, Piccinini M, Illescas J, Mariani A (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21:3428–3431CrossRef
Zurück zum Zitat Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, Peponi L, Kenny JM, Mriani A (2012) The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Res Lett 7:674–680CrossRef Nuvoli D, Alzari V, Sanna R, Scognamillo S, Piccinini M, Peponi L, Kenny JM, Mriani A (2012) The production of concentrated dispersions of few-layer graphene by the direct exfoliation of graphite in organosilanes. Nanoscale Res Lett 7:674–680CrossRef
Zurück zum Zitat Palussière J, Berge J, Gangi A, Cotten A, Pasco A, Bertagnoli R, Jaksche H, Carpeggiani P, Deramond H (2005) Clinical results of an open prospective study of a bis-GMA composite in percutaneous vertebral augmentation. Eur Spine J 14:982–991CrossRef Palussière J, Berge J, Gangi A, Cotten A, Pasco A, Bertagnoli R, Jaksche H, Carpeggiani P, Deramond H (2005) Clinical results of an open prospective study of a bis-GMA composite in percutaneous vertebral augmentation. Eur Spine J 14:982–991CrossRef
Zurück zum Zitat Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217–224CrossRef
Zurück zum Zitat Ponomarenko L, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356–358CrossRef Ponomarenko L, Schedin F, Katsnelson MI, Yang R, Hill EW, Novoselov KS, Geim AK (2008) Chaotic Dirac billiard in graphene quantum dots. Science 320:356–358CrossRef
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRef
Zurück zum Zitat Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRef Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890CrossRef
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRef
Zurück zum Zitat Roberson TM, Heyman H, Swift EJ (2002) Sturdevant’s art and science of operative dentistry, 4th edn. Mosby Elsevier, St Louis Roberson TM, Heyman H, Swift EJ (2002) Sturdevant’s art and science of operative dentistry, 4th edn. Mosby Elsevier, St Louis
Zurück zum Zitat Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34 Sanchez VC, Jachak A, Hurt RH, Kane AB (2012) Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem Res Toxicol 25:15–34
Zurück zum Zitat Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Lazzari M, Gioffredi E, Malucelli G, Mariani A (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Pol Sci Part A Polym Chem 50:4110–4118CrossRef Sanna R, Sanna D, Alzari V, Nuvoli D, Scognamillo S, Piccinini M, Lazzari M, Gioffredi E, Malucelli G, Mariani A (2012) Synthesis and characterization of graphene-containing thermoresponsive nanocomposite hydrogels of poly(N-vinylcaprolactam) prepared by frontal polymerization. J Pol Sci Part A Polym Chem 50:4110–4118CrossRef
Zurück zum Zitat Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464 Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2011) Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 3:2461–2464
Zurück zum Zitat Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101–395111CrossRef Sasidharan A, Panchakarla LS, Chandran P, Menon D, Nair S, Rao CNR, Koyakutty M (2012) Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23:395101–395111CrossRef
Zurück zum Zitat Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRef Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652–655CrossRef
Zurück zum Zitat Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024CrossRef Scognamillo S, Gioffredi E, Piccinini M, Lazzari M, Alzari V, Nuvoli D, Sanna R, Piga D, Malucelli G, Mariani A (2012) Synthesis and characterization of nanocomposites of thermoplastic polyurethane with both graphene and graphene nanoribbon fillers. Polymer 53:4019–4024CrossRef
Zurück zum Zitat Slonczewski JC, Weiss PR (1958) Band structure of graphite. Phys Rev 109:272–279CrossRef Slonczewski JC, Weiss PR (1958) Band structure of graphite. Phys Rev 109:272–279CrossRef
Zurück zum Zitat Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401–153404CrossRef Sofo JO, Chaudhari AS, Barber GD (2007) Graphane: a two-dimensional hydrocarbon. Phys Rev B 75:153401–153404CrossRef
Zurück zum Zitat Soh MS, Sellinger A, Yap AUJ (2006) Dental nanocomposites. Curr Nanosci 2:373–381CrossRef Soh MS, Sellinger A, Yap AUJ (2006) Dental nanocomposites. Curr Nanosci 2:373–381CrossRef
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286CrossRef
Zurück zum Zitat Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502CrossRef
Zurück zum Zitat Tuusa SM, Peltola MJ, Tirri T, Lassila LV, Vallittu PK (2007) Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 82:149–155 Tuusa SM, Peltola MJ, Tirri T, Lassila LV, Vallittu PK (2007) Frontal bone defect repair with experimental glass-fiber-reinforced composite with bioactive glass granule coating. J Biomed Mater Res B Appl Biomater 82:149–155
Zurück zum Zitat Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18:2221–2226CrossRef Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18:2221–2226CrossRef
Zurück zum Zitat Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRef Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett 8:323–327CrossRef
Zurück zum Zitat Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771CrossRef Wang X, Li X, Zhang L, Yoon Y, Weber PK, Wang H, Guo J, Dai H (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771CrossRef
Zurück zum Zitat Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282CrossRef Yoo E, Kim J, Hosono E, Zhou H, Kudo T, Honma I (2008) Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett 8:2277–2282CrossRef
Zurück zum Zitat Zhao DS, Moritz N, Laurila P, Mattila R, Lassila LV, Strandberg N, Mäntylä T, Vallittu P, Aro HT (2009) Development of a multi-component fiber-reinforced composite implant for load-sharing conditions. Med Eng Phys 31:461–469CrossRef Zhao DS, Moritz N, Laurila P, Mattila R, Lassila LV, Strandberg N, Mäntylä T, Vallittu P, Aro HT (2009) Development of a multi-component fiber-reinforced composite implant for load-sharing conditions. Med Eng Phys 31:461–469CrossRef
Metadaten
Titel
Synthesis and characterization of graphene-based nanocomposites with potential use for biomedical applications
verfasst von
Daniele Nuvoli
Valeria Alzari
Roberta Sanna
Sergio Scognamillo
Jenny Alongi
Giulio Malucelli
Alberto Mariani
Publikationsdatum
01.03.2013
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 3/2013
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-013-1512-x

Weitere Artikel der Ausgabe 3/2013

Journal of Nanoparticle Research 3/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.