Skip to main content
Erschienen in: Journal of Materials Science 2/2020

27.08.2019 | Chemical routes to materials

Synthesis and optimisation of a novel graphene wool material by atmospheric pressure chemical vapour deposition

verfasst von: Genna-Leigh Schoonraad, Moshawe Jack Madito, Ncholu Manyala, Patricia Forbes

Erschienen in: Journal of Materials Science | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A novel graphene wool material was synthesised by non-catalytic chemical vapour deposition using a high-purity quartz wool substrate. The in situ synthesis method avoids post-growth transfer and isolation steps and allows the graphene to be directly synthesised into graphene wool. In the absence of a catalyst during graphene growth, the cracking of methane and nucleation is not as efficient, resulting in graphene defects which can be minimised by optimising the growth conditions. The roles of the methane and hydrogen flow rates in the synthesis of the graphene wool were investigated, as was the effect of growth temperature, growth time and cooling rates. The precursor flow rates and growth temperature were found to be the most vital parameters. The best quality graphene wool showed a minimum ratio of the disordered carbon relative to the graphitic carbon (ID/IG ≈ 0.8) with a calculated crystallite grain size of 24 nm. The morphology of the optimised graphene wool was flake-like, and the X-ray photoelectron spectroscopy analysis revealed a surface composition of 94.05 at.% C 1s and 5.95 at.% O 1s. With this new material, the integrity of the synthesised graphene surface is preserved in use and it has the added advantage of structural support from the quartz substrate. Unlike many other forms of graphene, this fibrous graphene wool is flexible, malleable and compressible, allowing for a wealth of potential applications including in electronics, energy storage, catalysis, and gas sorption, storage, separation and sensing applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133(44):17548–17551CrossRef Chen J, Wen Y, Guo Y, Wu B, Huang L, Xue Y, Geng D, Wang D, Yu G, Liu Y (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133(44):17548–17551CrossRef
2.
Zurück zum Zitat Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271CrossRef Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56(8):1178–1271CrossRef
3.
Zurück zum Zitat Zhang G, Guo X, Wang S, Wang X, Zhou Y, Xu H (2014) New graphene fiber coating for volatile organic compounds analysis. J Chromatogr B 969:128–131CrossRef Zhang G, Guo X, Wang S, Wang X, Zhou Y, Xu H (2014) New graphene fiber coating for volatile organic compounds analysis. J Chromatogr B 969:128–131CrossRef
4.
Zurück zum Zitat Chen Z, Guo X, Zhu L, Li L, Liu Y, Zhao L, Zhang W, Chen J, Zhang Y, Zhao Y (2018) Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J Mater Sci Technol 34(10):1919–1924CrossRef Chen Z, Guo X, Zhu L, Li L, Liu Y, Zhao L, Zhang W, Chen J, Zhang Y, Zhao Y (2018) Direct growth of graphene on vertically standing glass by a metal-free chemical vapor deposition method. J Mater Sci Technol 34(10):1919–1924CrossRef
5.
Zurück zum Zitat Xu S, Man B, Jiang S, Yue W, Yang C, Liu M, Chen C, Zhang C (2014) Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology 25(16):165702CrossRef Xu S, Man B, Jiang S, Yue W, Yang C, Liu M, Chen C, Zhang C (2014) Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology 25(16):165702CrossRef
6.
Zurück zum Zitat Xu Z, Zhu H, Xu Z, Xie D, Fang Y (eds) (2018) Fundamental properties of graphene. In: Graphene. Academic Press, Cambridge, pp 73–102 Xu Z, Zhu H, Xu Z, Xie D, Fang Y (eds) (2018) Fundamental properties of graphene. In: Graphene. Academic Press, Cambridge, pp 73–102
7.
Zurück zum Zitat Aoki H, Dresselhaus MS (2014) Physics of graphene, 1st edn. Springer, BaselCrossRef Aoki H, Dresselhaus MS (2014) Physics of graphene, 1st edn. Springer, BaselCrossRef
8.
Zurück zum Zitat Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRef
9.
Zurück zum Zitat Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRef Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3(5):270–274CrossRef
10.
Zurück zum Zitat Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen X, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRef
11.
Zurück zum Zitat He Y, Liu Y, Wu T, Ma J, Wang X, Gong Q, Kong W, Xing F, Gao J (2013) An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity. J Hazard Mater 260:796–805CrossRef He Y, Liu Y, Wu T, Ma J, Wang X, Gong Q, Kong W, Xing F, Gao J (2013) An environmentally friendly method for the fabrication of reduced graphene oxide foam with a super oil absorption capacity. J Hazard Mater 260:796–805CrossRef
12.
Zurück zum Zitat Wu S, Kong L, Liu J (2016) Removal of mercury and fluoride from aqueous solutions by three-dimensional reduced-graphene oxide aerogel. Res Chem Intermed 42(5):4513–4530CrossRef Wu S, Kong L, Liu J (2016) Removal of mercury and fluoride from aqueous solutions by three-dimensional reduced-graphene oxide aerogel. Res Chem Intermed 42(5):4513–4530CrossRef
13.
Zurück zum Zitat Yousefi N, Lu X, Elimelech M, Tufenkji N (2019) Environmental performance of graphene-based 3D macrostructures. Nat Nanotechnol 14(2):107–119CrossRef Yousefi N, Lu X, Elimelech M, Tufenkji N (2019) Environmental performance of graphene-based 3D macrostructures. Nat Nanotechnol 14(2):107–119CrossRef
14.
Zurück zum Zitat Shi J, Wang Y, Du W, Hou Z (2016) Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon 99:330–337CrossRef Shi J, Wang Y, Du W, Hou Z (2016) Synthesis of graphene encapsulated Fe3C in carbon nanotubes from biomass and its catalysis application. Carbon 99:330–337CrossRef
15.
Zurück zum Zitat Vaziri S, Lupina G, Henkel C, Smith AD, Ostling M, Dabrowski J, Lippert G, Mehr W, Lemme MC (2013) A graphene-based hot electron transistor. Nano Lett 13(4):1435–1439CrossRef Vaziri S, Lupina G, Henkel C, Smith AD, Ostling M, Dabrowski J, Lippert G, Mehr W, Lemme MC (2013) A graphene-based hot electron transistor. Nano Lett 13(4):1435–1439CrossRef
16.
Zurück zum Zitat Ganesan A, Shaijumon MM (2016) Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater 220:21–27CrossRef Ganesan A, Shaijumon MM (2016) Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater 220:21–27CrossRef
17.
Zurück zum Zitat Kumar R, Suresh VM, Maji TK, Rao CN (2014) Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties. Chem Commun (Camb) 50(16):2015–2017CrossRef Kumar R, Suresh VM, Maji TK, Rao CN (2014) Porous graphene frameworks pillared by organic linkers with tunable surface area and gas storage properties. Chem Commun (Camb) 50(16):2015–2017CrossRef
18.
Zurück zum Zitat Nidheesh PV (2017) Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res 24(35):27047–27069CrossRef Nidheesh PV (2017) Graphene-based materials supported advanced oxidation processes for water and wastewater treatment: a review. Environ Sci Pollut Res 24(35):27047–27069CrossRef
19.
Zurück zum Zitat Pang S, Englert JM, Tsao HN, Hernandez Y, Hirsch A, Feng X, Müllen K (2010) Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene. Adv Mater 22(47):5374–5377CrossRef Pang S, Englert JM, Tsao HN, Hernandez Y, Hirsch A, Feng X, Müllen K (2010) Extrinsic corrugation-assisted mechanical exfoliation of monolayer graphene. Adv Mater 22(47):5374–5377CrossRef
20.
Zurück zum Zitat Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef Yi M, Shen Z (2015) A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A 3(22):11700–11715CrossRef
21.
Zurück zum Zitat Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRef
22.
Zurück zum Zitat Saleem H, Haneef M, Abbasi HY (2018) Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater Chem Phys 204:1–7CrossRef Saleem H, Haneef M, Abbasi HY (2018) Synthesis route of reduced graphene oxide via thermal reduction of chemically exfoliated graphene oxide. Mater Chem Phys 204:1–7CrossRef
23.
Zurück zum Zitat Poon SW, Chen W, Tok ES, Wee ATS (2008) Probing epitaxial growth of graphene on silicon carbide by metal decoration. Appl Phys Lett 92(10):104102CrossRef Poon SW, Chen W, Tok ES, Wee ATS (2008) Probing epitaxial growth of graphene on silicon carbide by metal decoration. Appl Phys Lett 92(10):104102CrossRef
24.
Zurück zum Zitat Mishra N, Boeckl J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: a review graphene growth on silicon carbide. Physica Status Solidi (a) 213(9):2277–2289CrossRef Mishra N, Boeckl J, Motta N, Iacopi F (2016) Graphene growth on silicon carbide: a review graphene growth on silicon carbide. Physica Status Solidi (a) 213(9):2277–2289CrossRef
25.
Zurück zum Zitat Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu(111). Nano Lett 10(9):3512–3516CrossRef Gao L, Guest JR, Guisinger NP (2010) Epitaxial graphene on Cu(111). Nano Lett 10(9):3512–3516CrossRef
26.
Zurück zum Zitat Chen H, Zhu W, Zhang Z (2010) Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys Rev Lett 104(18):186101CrossRef Chen H, Zhu W, Zhang Z (2010) Contrasting behavior of carbon nucleation in the initial stages of graphene epitaxial growth on stepped metal surfaces. Phys Rev Lett 104(18):186101CrossRef
27.
Zurück zum Zitat Li X, Cai W, An J, Yang D, Piner R, Velamakanni A, Jung I, Ruoff RS, Kim S, Nah J, Tutuc E, Banerjee SK, Colombo L (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRef Li X, Cai W, An J, Yang D, Piner R, Velamakanni A, Jung I, Ruoff RS, Kim S, Nah J, Tutuc E, Banerjee SK, Colombo L (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRef
28.
Zurück zum Zitat Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G (2011) Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res 4(12):1208–1214CrossRef Xue Y, Wu B, Guo Y, Huang L, Jiang L, Chen J, Geng D, Liu Y, Hu W, Yu G (2011) Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res 4(12):1208–1214CrossRef
29.
Zurück zum Zitat Jung DH, Kang C, Kim M, Cheong H, Lee H, Lee JS (2014) Effects of hydrogen partial pressure in the annealing process on graphene growth. J Phys Chem C 118(7):3574–3580CrossRef Jung DH, Kang C, Kim M, Cheong H, Lee H, Lee JS (2014) Effects of hydrogen partial pressure in the annealing process on graphene growth. J Phys Chem C 118(7):3574–3580CrossRef
30.
Zurück zum Zitat Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117(37):18919–18926CrossRef Vlassiouk I, Smirnov S, Regmi M, Surwade SP, Srivastava N, Feenstra R, Eres G, Parish C, Lavrik N, Datskos P, Dai S, Fulvio P (2013) Graphene nucleation density on copper: fundamental role of background pressure. J Phys Chem C 117(37):18919–18926CrossRef
31.
Zurück zum Zitat Cole MT, Lindvall N, Yurgens A (2012) Noncatalytic chemical vapor deposition of graphene on high-temperature substrates for transparent electrodes. Appl Phys Lett 100(2):022102CrossRef Cole MT, Lindvall N, Yurgens A (2012) Noncatalytic chemical vapor deposition of graphene on high-temperature substrates for transparent electrodes. Appl Phys Lett 100(2):022102CrossRef
32.
Zurück zum Zitat Tai L, Zhu D, Liu X, Yang T, Wang L, Wang R, Jiang S, Chen Z, Xu Z, Li X (2018) Direct growth of graphene on silicon by metal-free chemical vapor deposition. Nano-Micro Lett 10(2):1–9CrossRef Tai L, Zhu D, Liu X, Yang T, Wang L, Wang R, Jiang S, Chen Z, Xu Z, Li X (2018) Direct growth of graphene on silicon by metal-free chemical vapor deposition. Nano-Micro Lett 10(2):1–9CrossRef
33.
Zurück zum Zitat Han W, Zettl A (2002) An efficient route to graphitic carbon-layer-coated gallium nitride nanorods. Adv Mater 14(21):1560–1562CrossRef Han W, Zettl A (2002) An efficient route to graphitic carbon-layer-coated gallium nitride nanorods. Adv Mater 14(21):1560–1562CrossRef
34.
Zurück zum Zitat Ding X, Ding G, Xie X, Huang F, Jiang M (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49(7):2522–2525CrossRef Ding X, Ding G, Xie X, Huang F, Jiang M (2011) Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition. Carbon 49(7):2522–2525CrossRef
35.
Zurück zum Zitat Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13):4204–4210CrossRef Guermoune A, Chari T, Popescu F, Sabri SS, Guillemette J, Skulason HS, Szkopek T, Siaj M (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13):4204–4210CrossRef
36.
Zurück zum Zitat Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516CrossRef Reina A, Thiele S, Jia X, Bhaviripudi S, Dresselhaus MS, Schaefer JA, Kong J (2009) Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res 2(6):509–516CrossRef
37.
Zurück zum Zitat Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett 9(12):3985–3990CrossRef Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareño J, Gambin V, Petrov I, Kodambaka S (2009) Growth of semiconducting graphene on palladium. Nano Lett 9(12):3985–3990CrossRef
38.
Zurück zum Zitat Imamura G, Saiki K (2011) Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. J Phys Chem C 115(20):10000–10005CrossRef Imamura G, Saiki K (2011) Synthesis of nitrogen-doped graphene on Pt(111) by chemical vapor deposition. J Phys Chem C 115(20):10000–10005CrossRef
39.
Zurück zum Zitat Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS (2011) Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett 11(9):3519–3525CrossRef Chen S, Cai W, Piner RD, Suk JW, Wu Y, Ren Y, Kang J, Ruoff RS (2011) Synthesis and characterization of large-area graphene and graphite films on commercial Cu–Ni alloy foils. Nano Lett 11(9):3519–3525CrossRef
40.
Zurück zum Zitat Hwang J, Kim M, Cha H-Y, Spencer M, Lee J-W (2014) Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD). J Nanosci Nanotechnol 14(4):2979–2983CrossRef Hwang J, Kim M, Cha H-Y, Spencer M, Lee J-W (2014) Metal free growth of graphene on quartz substrate using chemical vapor deposition (CVD). J Nanosci Nanotechnol 14(4):2979–2983CrossRef
41.
Zurück zum Zitat Schoonraad G, Forbes PBC (2019) System and method for manufacturing graphene wool, South Africa. Patent no: 2019/00675 Schoonraad G, Forbes PBC (2019) System and method for manufacturing graphene wool, South Africa. Patent no: 2019/00675
42.
Zurück zum Zitat Schoonraad G, Forbes PBC (2019) Air pollutant trap. Patent no: 2019/00674 Schoonraad G, Forbes PBC (2019) Air pollutant trap. Patent no: 2019/00674
43.
Zurück zum Zitat Kozlov GI, Knorre VG (1962) Single-pulse shock tube studies on the kinetics of the thermal decomposition of methane. Combust Flame 6:253–263CrossRef Kozlov GI, Knorre VG (1962) Single-pulse shock tube studies on the kinetics of the thermal decomposition of methane. Combust Flame 6:253–263CrossRef
44.
Zurück zum Zitat Hermann J, DiStasio RA Jr, Tkatchenko A (2017) First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem Rev 117(6):4714–4758CrossRef Hermann J, DiStasio RA Jr, Tkatchenko A (2017) First-principles models for van der Waals interactions in molecules and materials: concepts, theory, and applications. Chem Rev 117(6):4714–4758CrossRef
45.
Zurück zum Zitat Ndiaye NM, Ngom BD, Sylla NF, Masikhwa TM, Madito MJ, Momodu D, Ntsoane T, Manyala N (2018) Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor. J Colloid Interface Sci 532:395–406CrossRef Ndiaye NM, Ngom BD, Sylla NF, Masikhwa TM, Madito MJ, Momodu D, Ntsoane T, Manyala N (2018) Three dimensional vanadium pentoxide/graphene foam composite as positive electrode for high performance asymmetric electrochemical supercapacitor. J Colloid Interface Sci 532:395–406CrossRef
46.
Zurück zum Zitat Shin YC, Kong J (2013) Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition. Carbon 59:439–447CrossRef Shin YC, Kong J (2013) Hydrogen-excluded graphene synthesis via atmospheric pressure chemical vapor deposition. Carbon 59:439–447CrossRef
47.
Zurück zum Zitat Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034CrossRef Chen J, Li C, Ristovski Z, Milic A, Gu Y, Islam MS, Wang S, Hao J, Zhang H, He C (2017) A review of biomass burning: emissions and impacts on air quality, health and climate in China. Sci Total Environ 579:1000–1034CrossRef
48.
Zurück zum Zitat Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106CrossRef Cançado LG, Takai K, Enoki T, Endo M, Kim YA, Mizusaki H, Jorio A, Coelho LN, Magalhães-Paniago R, Pimenta MA (2006) General equation for the determination of the crystallite size of nanographite by Raman spectroscopy. Appl Phys Lett 88(16):163106CrossRef
49.
Zurück zum Zitat Chen J, Guo Y, Wen Y, Huang L, Xue Y, Geng D, Wu B, Luo B, Yu G, Liu Y (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25(7):992–997CrossRef Chen J, Guo Y, Wen Y, Huang L, Xue Y, Geng D, Wu B, Luo B, Yu G, Liu Y (2013) Two-stage metal-catalyst-free growth of high-quality polycrystalline graphene films on silicon nitride substrates. Adv Mater 25(7):992–997CrossRef
50.
Zurück zum Zitat Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014) Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J Am Chem Soc 136(18):6574–6577CrossRef Sun J, Gao T, Song X, Zhao Y, Lin Y, Wang H, Ma D, Chen Y, Xiang W, Wang J, Zhang Y, Liu Z (2014) Direct growth of high-quality graphene on high-κ dielectric SrTiO3 substrates. J Am Chem Soc 136(18):6574–6577CrossRef
51.
Zurück zum Zitat Butenko YV, Krishnamurthy S, Chakraborty AK, Kuznetsov VL, Dhanak VR, Hunt MRC, Šiller L (2005) Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys Rev B 71(7):075420CrossRef Butenko YV, Krishnamurthy S, Chakraborty AK, Kuznetsov VL, Dhanak VR, Hunt MRC, Šiller L (2005) Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys Rev B 71(7):075420CrossRef
52.
Zurück zum Zitat Hsiao M-C, Liao S-H, Yen M-Y, Teng C-C, Lee S-H, Pu N-W, Wang C-A, Sung Y, Ger M-D, Ma C-CM, Hsiao M-H (2010) Preparation and properties of a graphene reinforced nanocomposite conducting plate. J Mater Chem 20(39):8496–8505CrossRef Hsiao M-C, Liao S-H, Yen M-Y, Teng C-C, Lee S-H, Pu N-W, Wang C-A, Sung Y, Ger M-D, Ma C-CM, Hsiao M-H (2010) Preparation and properties of a graphene reinforced nanocomposite conducting plate. J Mater Chem 20(39):8496–8505CrossRef
53.
Zurück zum Zitat Ogawa S, Yamada T, Ishidzuka S, Yoshigoe A, Hasegawa M, Teraoka Y, Takakuwa Y (2013) Graphene growth and carbon diffusion process during vacuum heating on Cu(111)/Al2O3 substrates. Jpn J Appl Phys 52(11R):110122CrossRef Ogawa S, Yamada T, Ishidzuka S, Yoshigoe A, Hasegawa M, Teraoka Y, Takakuwa Y (2013) Graphene growth and carbon diffusion process during vacuum heating on Cu(111)/Al2O3 substrates. Jpn J Appl Phys 52(11R):110122CrossRef
Metadaten
Titel
Synthesis and optimisation of a novel graphene wool material by atmospheric pressure chemical vapour deposition
verfasst von
Genna-Leigh Schoonraad
Moshawe Jack Madito
Ncholu Manyala
Patricia Forbes
Publikationsdatum
27.08.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03948-0

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Science 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.