Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 20/2021

09.09.2021

Synthesis of activated carbon from black liquor for the application of supercapacitor

verfasst von: Shanmugam Palanisamy, Senthil Kumar Kandasamy, Sathesh Thangmuthu, Dhinesh Kumar Selvarasu, Marimuthu Panchanathan, Prasanna Venkatesh Ramanai, Borje Sten Gevert

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 20/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, black liquor carbonization has been investigated by hydrothermal process. The activated carbon from the carbonization of black liquor (AC-BL) and biomass-based activated carbon from citrus sinensis flavedos (AC-OP) has been investigated for suitability in supercapacitor application. The study has analyzed the electrochemical measurement of both AC-BL and AC-OP in electrochemical stations. The role of stable hydroxyl molecules on the surface of carbon material has been observed and its effective conductivity is studied. The superior performance of AC-OP-derived nanoporous carbon has fast ionic and electronic diffusion of the electrolyte in and out of the pores during charging and discharging due to high surface area. AC-BL exhibited with an EDLC mechanism, but AC-OP shows the pseudocapacitance property. The porous structure and oxygen doping characteristics in AC-BL can influence the potential electrode material for applications in the field of supercapacitors. With the help of this movement, the electronic conductivity of the AC-BL has been increased. In general, the electrochemical stability of the EDLC is far better than the pseudocapacitor. From the GCD analysis, it is observed that the specific capacitance of 17.4 and 148.2 F g−1 is obtained from GCD spectra for AC-BL and AC-OP, respectively. From the EIS analysis, the ESR value is very small for AC-BL (60 Ω), when compared to AC-OP (155 Ω). To conclude that the EIS results of low conductivity by AC-BL have the potential to be future supercapacitors with enhanced treatment in carbonization techniques.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
6.
Zurück zum Zitat S.K. Kandasamy, K. Kandasamy, Recent advances in electrochemical performances of graphene composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) electrode materials for supercapacitor: a review. J. Inorg. Organomet. Polym. 28, 559–584 (2018). https://doi.org/10.1007/s10904-018-0779-xCrossRef S.K. Kandasamy, K. Kandasamy, Recent advances in electrochemical performances of graphene composite (Graphene-Polyaniline/Polypyrrole/Activated Carbon/Carbon Nanotube) electrode materials for supercapacitor: a review. J. Inorg. Organomet. Polym. 28, 559–584 (2018). https://​doi.​org/​10.​1007/​s10904-018-0779-xCrossRef
7.
Zurück zum Zitat M. Devendran, S. K. Kandasamy, S. Palanisamy, S. Selvaraj, R. Vetrivel, R. Selvarajan, M. Govindasamy, K. Kandasamy, Preparation of chemically modified porous carbon networks derived from citrus sinensis flavedos as electrode material for supercapacitor. Int. J. Electrochem. Sci. 15(4), 4379–4387 (2020) https://doi.org/10.20964/2020.05.08 M. Devendran, S. K. Kandasamy, S. Palanisamy, S. Selvaraj, R. Vetrivel, R. Selvarajan, M. Govindasamy, K. Kandasamy, Preparation of chemically modified porous carbon networks derived from citrus sinensis flavedos as electrode material for supercapacitor. Int. J. Electrochem. Sci. 15(4), 4379–4387 (2020) https://​doi.​org/​10.​20964/​2020.​05.​08
8.
Zurück zum Zitat S. K. Kandasamy, C. Arumugam, L. Vadivel, M. Ganapathi, N. Nattudurai, K. Kandasamy, Synthesis of chemically modified activated carbon for supercapacitor electrode derived from fibers of Musa paradisiaca. Int. J. Emerg. Technol. 11(3), 565–569 (2020) https://doi.org/10.14447/jnmes.v24i2.a04 S. K. Kandasamy, C. Arumugam, L. Vadivel, M. Ganapathi, N. Nattudurai, K. Kandasamy, Synthesis of chemically modified activated carbon for supercapacitor electrode derived from fibers of Musa paradisiaca. Int. J. Emerg. Technol. 11(3), 565–569 (2020) https://​doi.​org/​10.​14447/​jnmes.​v24i2.​a04
9.
12.
20.
27.
28.
Zurück zum Zitat R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead–CNT–graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 7(27), 15042–15051 (2015). https://doi.org/10.1021/acsami.5b04336CrossRef R. Kumar, R.K. Singh, P.K. Dubey, D.P. Singh, R.M. Yadav, Self-assembled hierarchical formation of conjugated 3D cobalt oxide nanobead–CNT–graphene nanostructure using microwaves for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 7(27), 15042–15051 (2015). https://​doi.​org/​10.​1021/​acsami.​5b04336CrossRef
29.
Zurück zum Zitat R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 9(10), 8880–8890 (2017). https://doi.org/10.1021/acsami.6b14704CrossRef R. Kumar, R.K. Singh, A.R. Vaz, R. Savu, S.A. Moshkalev, Self-assembled and one-step synthesis of interconnected 3D network of Fe3O4/reduced graphene oxide nanosheets hybrid for high-performance supercapacitor electrode. ACS Appl. Mater. Interfaces 9(10), 8880–8890 (2017). https://​doi.​org/​10.​1021/​acsami.​6b14704CrossRef
33.
Zurück zum Zitat R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav, R.K. Verma, D.P. Singh, W.K. Tan, A.P. Pino, S.A. Moshkalev, A. Matsuda, A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: recent progress and perspectives. Nano Res. 12, 2655–2694 (2019). https://doi.org/10.1007/s12274-019-2467-8CrossRef R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, R.M. Yadav, R.K. Verma, D.P. Singh, W.K. Tan, A.P. Pino, S.A. Moshkalev, A. Matsuda, A review on synthesis of graphene, h-BN and MoS2 for energy storage applications: recent progress and perspectives. Nano Res. 12, 2655–2694 (2019). https://​doi.​org/​10.​1007/​s12274-019-2467-8CrossRef
35.
Zurück zum Zitat S. K. Kandasamy, C. Arumugam, A. S. Sajitha, S. P. Rao, S. Selvaraj, R. Vetrivel, R. Selvarajan, A. M. Alosaimi, A. Khan, M. A. Hussein, A. M. Asiri, Paradisiaca/Solanum tuberosum biowaste composited with graphene oxide for flexible supercapacitor. J. New Mater. Electrochem. Syst. 24(1):21–28 (2021) https://doi.org/10.14447/jnmes.v24i1.a04 S. K. Kandasamy, C. Arumugam, A. S. Sajitha, S. P. Rao, S. Selvaraj, R. Vetrivel, R. Selvarajan, A. M. Alosaimi, A. Khan, M. A. Hussein, A. M. Asiri, Paradisiaca/Solanum tuberosum biowaste composited with graphene oxide for flexible supercapacitor. J. New Mater. Electrochem. Syst. 24(1):21–28 (2021) https://​doi.​org/​10.​14447/​jnmes.​v24i1.​a04
36.
Zurück zum Zitat S. K. Kandasamy, B. Subramanian, H. Krishnamoorthy, C. Arumugam, V. Suganthi, M. Yuvasri, D. Shreelogesh, Chemically treated activated carbon for supercapacitor electrode derived from starch of solanum tuberosum. J. New Mater. Electrochem. Syst. 24(2), 78–83 (2021) https://doi.org/10.14447/jnmes.v24i2.a04 S. K. Kandasamy, B. Subramanian, H. Krishnamoorthy, C. Arumugam, V. Suganthi, M. Yuvasri, D. Shreelogesh, Chemically treated activated carbon for supercapacitor electrode derived from starch of solanum tuberosum. J. New Mater. Electrochem. Syst. 24(2), 78–83 (2021) https://​doi.​org/​10.​14447/​jnmes.​v24i2.​a04
39.
Zurück zum Zitat G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A.K. Singh, J. Singh, A. Srivastava, S.K. Srivastava, A. Srivastava, In Situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16, 85 (2021). https://doi.org/10.1186/s11671-021-03545-8CrossRef G.K. Gupta, P. Sagar, S.K. Pandey, M. Srivastava, A.K. Singh, J. Singh, A. Srivastava, S.K. Srivastava, A. Srivastava, In Situ fabrication of activated carbon from a bio-waste Desmostachya bipinnata for the improved supercapacitor performance. Nanoscale Res. Lett. 16, 85 (2021). https://​doi.​org/​10.​1186/​s11671-021-03545-8CrossRef
40.
Metadaten
Titel
Synthesis of activated carbon from black liquor for the application of supercapacitor
verfasst von
Shanmugam Palanisamy
Senthil Kumar Kandasamy
Sathesh Thangmuthu
Dhinesh Kumar Selvarasu
Marimuthu Panchanathan
Prasanna Venkatesh Ramanai
Borje Sten Gevert
Publikationsdatum
09.09.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 20/2021
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-021-06974-4

Weitere Artikel der Ausgabe 20/2021

Journal of Materials Science: Materials in Electronics 20/2021 Zur Ausgabe

Neuer Inhalt