Skip to main content
Erschienen in: Journal of Materials Science 7/2020

23.10.2019 | Chemical routes to materials

Synthesis of single-layer graphene film by chemical vapor deposition with molten gallium catalyst on silicon dioxide

verfasst von: Pengbo Zhang, Xifeng Liu, Xiaohong Fang, Xiaoyuan Chen

Erschienen in: Journal of Materials Science | Ausgabe 7/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Conventional synthesis of graphene film by chemical vapor deposition (CVD) on a metal substrate, which may require damaging and polluting processes to transfer graphene onto an insulating substrate for possible applications subsequently, needs to be improved. In the past few years, molten gallium, as a kind of catalyst for synthesizing graphene film, has presented various unique properties, especially showing excellent catalytic efficiency and forming graphene channel patterns naturally as expected. Herein, we utilized molten Ga as the catalyst and silicon dioxide as the substrate to realize the synthesis of high-quality and single-layer graphene film by low-pressure CVD at 800 °C ~ 1000 °C. What’s more, the Ga catalyst, which still contained graphene nuclei even though it had been recycled several times, contributed to synthesizing single-layer graphene film even at 400 °C for both economy and environment sake.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
2.
Zurück zum Zitat Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602CrossRef Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC, Jaszczak JA, Geim AK (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602CrossRef
3.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRef
4.
Zurück zum Zitat Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308CrossRef Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308CrossRef
5.
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578CrossRef Bae S, Kim H, Lee Y, Xu XF, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5(8):574–578CrossRef
6.
Zurück zum Zitat Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):3CrossRef Ghosh S, Calizo I, Teweldebrhan D, Pokatilov EP, Nika DL, Balandin AA, Bao W, Miao F, Lau CN (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):3CrossRef
7.
Zurück zum Zitat Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662CrossRef Lin YM, Dimitrakopoulos C, Jenkins KA, Farmer DB, Chiu HY, Grill A, Avouris P (2010) 100-GHz transistors from wafer-scale epitaxial graphene. Science 327(5966):662CrossRef
8.
Zurück zum Zitat Lopez GA, Mittemeijer E (2004) The solubility of C in solid Cu. Scr Mater 51(1):1–5CrossRef Lopez GA, Mittemeijer E (2004) The solubility of C in solid Cu. Scr Mater 51(1):1–5CrossRef
9.
Zurück zum Zitat Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10(10):4128–4133CrossRef Bhaviripudi S, Jia X, Dresselhaus MS, Kong J (2010) Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett 10(10):4128–4133CrossRef
10.
Zurück zum Zitat Cai W, Piner RD, Zhu Y, Li X, Tan Z, Floresca HC, Yang C, Lu L, Kim MJ, Ruoff RS (2009) Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Res 2(11):851–856CrossRef Cai W, Piner RD, Zhu Y, Li X, Tan Z, Floresca HC, Yang C, Lu L, Kim MJ, Ruoff RS (2009) Synthesis of isotopically-labeled graphite films by cold-wall chemical vapor deposition and electronic properties of graphene obtained from such films. Nano Res 2(11):851–856CrossRef
11.
Zurück zum Zitat Liu W, Chung C-H, Miao C-Q, Wang Y-J, Li B-Y, Ruan L-Y, Patel K, Park Y-J, Woo J, Xie Y-H (2010) Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films 518:S128–S132CrossRef Liu W, Chung C-H, Miao C-Q, Wang Y-J, Li B-Y, Ruan L-Y, Patel K, Park Y-J, Woo J, Xie Y-H (2010) Chemical vapor deposition of large area few layer graphene on Si catalyzed with nickel films. Thin Solid Films 518:S128–S132CrossRef
12.
Zurück zum Zitat Wang Y, Miao C, Huang B-C, Zhu J, Liu W, Park Y, Xie Y-H, Woo JCS (2010) Scalable synthesis of graphene on patterned Ni and transfer. IEEE T Electron Dev 57(12):3472–3476CrossRef Wang Y, Miao C, Huang B-C, Zhu J, Liu W, Park Y, Xie Y-H, Woo JCS (2010) Scalable synthesis of graphene on patterned Ni and transfer. IEEE T Electron Dev 57(12):3472–3476CrossRef
13.
Zurück zum Zitat Fujita J-i, Ueki R, Miyazawa Y, Ichihashi T (2009) Graphitization at interface between amorphous carbon and liquid gallium for fabricating large area graphene sheets. J Vac Sci Technol B 27(6):3063–3066CrossRef Fujita J-i, Ueki R, Miyazawa Y, Ichihashi T (2009) Graphitization at interface between amorphous carbon and liquid gallium for fabricating large area graphene sheets. J Vac Sci Technol B 27(6):3063–3066CrossRef
14.
Zurück zum Zitat Fujita J-I, Miyazawa Y, Ueki R, Sasaki M, Saito T (2010) Direct transformation of a resist pattern into a graphene field effect transistor through interfacial graphitization of liquid gallium. J Vac Sci Technol B 28(6):C6D1–C6D4CrossRef Fujita J-I, Miyazawa Y, Ueki R, Sasaki M, Saito T (2010) Direct transformation of a resist pattern into a graphene field effect transistor through interfacial graphitization of liquid gallium. J Vac Sci Technol B 28(6):C6D1–C6D4CrossRef
15.
Zurück zum Zitat Fujita J-I, Miyazawa Y, Ueki R, Sasaki M, Saito T (2010) Fabrication of large-area graphene using liquid gallium and its electrical properties. Jpn J Appl Phys 49(6):06GC01 Fujita J-I, Miyazawa Y, Ueki R, Sasaki M, Saito T (2010) Fabrication of large-area graphene using liquid gallium and its electrical properties. Jpn J Appl Phys 49(6):06GC01
16.
Zurück zum Zitat Ding G, Zhu Y, Wang S, Gong Q, Sun L, Wu T, Xie X, Jiang M (2013) Chemical vapor deposition of graphene on liquid metal catalysts. Carbon 53:321–326CrossRef Ding G, Zhu Y, Wang S, Gong Q, Sun L, Wu T, Xie X, Jiang M (2013) Chemical vapor deposition of graphene on liquid metal catalysts. Carbon 53:321–326CrossRef
17.
Zurück zum Zitat Mukanova A, Tussupbayev R, Sabitov A, Bondarenko I, Nemkaeva R, Aldamzharov B, Bakenov Z (2017) CVD graphene growth on a surface of liquid gallium. Mater Today Proc 4(3):4548–4554CrossRef Mukanova A, Tussupbayev R, Sabitov A, Bondarenko I, Nemkaeva R, Aldamzharov B, Bakenov Z (2017) CVD graphene growth on a surface of liquid gallium. Mater Today Proc 4(3):4548–4554CrossRef
18.
Zurück zum Zitat Teng P-Y, Lu C-C, Akiyama-Hasegawa K, Lin Y-C, Yeh C-H, Suenaga K, Chiu P-W (2012) Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett 12(3):1379–1384CrossRef Teng P-Y, Lu C-C, Akiyama-Hasegawa K, Lin Y-C, Yeh C-H, Suenaga K, Chiu P-W (2012) Remote catalyzation for direct formation of graphene layers on oxides. Nano Lett 12(3):1379–1384CrossRef
19.
Zurück zum Zitat Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin H-J, Baik J, Choi HC (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7(8):6575–6582CrossRef Kim H, Song I, Park C, Son M, Hong M, Kim Y, Kim JS, Shin H-J, Baik J, Choi HC (2013) Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. ACS Nano 7(8):6575–6582CrossRef
20.
Zurück zum Zitat Tan L, Zeng M, Wu Q, Chen L, Wang J, Zhang T, Eckert J, Ruemmeli MH, Fu L (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11(15):1840–1846CrossRef Tan L, Zeng M, Wu Q, Chen L, Wang J, Zhang T, Eckert J, Ruemmeli MH, Fu L (2015) Direct growth of ultrafast transparent single-layer graphene defoggers. Small 11(15):1840–1846CrossRef
21.
Zurück zum Zitat Murakami K, Tanaka S, Hirukawa A, Hiyama T, Kuwajima T, Kano E, Takeguchi M, Fujita J-I (2015) Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition. Appl Phys Lett 106(9):093112CrossRef Murakami K, Tanaka S, Hirukawa A, Hiyama T, Kuwajima T, Kano E, Takeguchi M, Fujita J-I (2015) Direct synthesis of large area graphene on insulating substrate by gallium vapor-assisted chemical vapor deposition. Appl Phys Lett 106(9):093112CrossRef
22.
Zurück zum Zitat Geiger F, Busse CA, Loehrke RI (1987) The vapor pressure of indium, silver, gallium, copper, tin, and gold between 0.1 and 3.0 bar. Int J Thermophys 8(4):425–436CrossRef Geiger F, Busse CA, Loehrke RI (1987) The vapor pressure of indium, silver, gallium, copper, tin, and gold between 0.1 and 3.0 bar. Int J Thermophys 8(4):425–436CrossRef
23.
Zurück zum Zitat Levendorf MP, Ruiz-Vargas CS, Garg S, Park J (2009) Transfer-free batch fabrication of single layer graphene transistors. Nano Lett 9(12):4479–4483CrossRef Levendorf MP, Ruiz-Vargas CS, Garg S, Park J (2009) Transfer-free batch fabrication of single layer graphene transistors. Nano Lett 9(12):4479–4483CrossRef
24.
Zurück zum Zitat Zhuo Q-Q, Wang Q, Zhang Y-P, Zhang D, Li Q-L, Gao C-H, Sun Y-Q, Ding L, Sun Q-J, Wang S-D, Zhong J, Sun X-H, Lee S-T (2015) Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9(1):594–601CrossRef Zhuo Q-Q, Wang Q, Zhang Y-P, Zhang D, Li Q-L, Gao C-H, Sun Y-Q, Ding L, Sun Q-J, Wang S-D, Zhong J, Sun X-H, Lee S-T (2015) Transfer-free synthesis of doped and patterned graphene films. ACS Nano 9(1):594–601CrossRef
25.
Zurück zum Zitat Su C-Y, Lu A-Y, Wu C-Y, Li Y-T, Liu K-K, Zhang W, Lin S-Y, Juang Z-Y, Zhong Y-L, Chen F-R, Li L-J (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11(9):3612–3616CrossRef Su C-Y, Lu A-Y, Wu C-Y, Li Y-T, Liu K-K, Zhang W, Lin S-Y, Juang Z-Y, Zhong Y-L, Chen F-R, Li L-J (2011) Direct formation of wafer scale graphene thin layers on insulating substrates by chemical vapor deposition. Nano Lett 11(9):3612–3616CrossRef
26.
Zurück zum Zitat Peng Z, Yan Z, Sun Z, Tour JM (2011) Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5(10):8241–8247CrossRef Peng Z, Yan Z, Sun Z, Tour JM (2011) Direct growth of bilayer graphene on SiO2 substrates by carbon diffusion through nickel. ACS Nano 5(10):8241–8247CrossRef
27.
Zurück zum Zitat Kwak J, Chu JH, Choi J-K, Park S-D, Go H, Kim SY, Park K, Kim S-D, Kim Y-W, Yoon E, Kodambaka S, Kwon S-Y (2012) Near room-temperature synthesis of transfer-free graphene films. Nat Commun 3:645CrossRef Kwak J, Chu JH, Choi J-K, Park S-D, Go H, Kim SY, Park K, Kim S-D, Kim Y-W, Yoon E, Kodambaka S, Kwon S-Y (2012) Near room-temperature synthesis of transfer-free graphene films. Nat Commun 3:645CrossRef
28.
Zurück zum Zitat Hiyama T, Murakami K, Kuwajima T, Takeguchi M, Fujita J-I (2015) Low-temperature growth of graphene using interfacial catalysis of molten gallium and diluted methane chemical vapor deposition. Appl Phys Express 8(9):095102CrossRef Hiyama T, Murakami K, Kuwajima T, Takeguchi M, Fujita J-I (2015) Low-temperature growth of graphene using interfacial catalysis of molten gallium and diluted methane chemical vapor deposition. Appl Phys Express 8(9):095102CrossRef
29.
Zurück zum Zitat Fujita J-i, Hiyama T, Hirukawa A, Kondo T, Nakamura J, Ito S-i, Araki R, Ito Y, Takeguchi M, Pai WW (2017) Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci Rep UK 7(1):12371CrossRef Fujita J-i, Hiyama T, Hirukawa A, Kondo T, Nakamura J, Ito S-i, Araki R, Ito Y, Takeguchi M, Pai WW (2017) Near room temperature chemical vapor deposition of graphene with diluted methane and molten gallium catalyst. Sci Rep UK 7(1):12371CrossRef
30.
Zurück zum Zitat Saikubo A, Kanda K, Kato Y, Igaki J-Y, Kometani R, Matsui S (2007) Angle-dependent measurement of near edge X-ray absorption fine structure of annealing effect on local structure of focused-ion-beam chemical vapor deposition diamond-like carbon. Jpn J Appl Phys 46(11):7512–7513CrossRef Saikubo A, Kanda K, Kato Y, Igaki J-Y, Kometani R, Matsui S (2007) Angle-dependent measurement of near edge X-ray absorption fine structure of annealing effect on local structure of focused-ion-beam chemical vapor deposition diamond-like carbon. Jpn J Appl Phys 46(11):7512–7513CrossRef
Metadaten
Titel
Synthesis of single-layer graphene film by chemical vapor deposition with molten gallium catalyst on silicon dioxide
verfasst von
Pengbo Zhang
Xifeng Liu
Xiaohong Fang
Xiaoyuan Chen
Publikationsdatum
23.10.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04131-1

Weitere Artikel der Ausgabe 7/2020

Journal of Materials Science 7/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.