Skip to main content
Erschienen in: Journal of Electroceramics 4/2023

15.09.2023

Synthesis techniques and advance applications of spinel ferrites: A short review

verfasst von: Shayista Gaffar, Amit Kumar, Ufana Riaz

Erschienen in: Journal of Electroceramics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spinel ferrites are among the most promising soft magnetic materials due to their superior coercivity, tailored band gap, high saturation magnetization, and other physical, thermal, and electrical characteristics. In the areas of cancer treatment, disease detection, magnetic resonance imaging, drug delivery, and release, soft ferrite nanoparticles (SFNPs) offer limitless potential. Ferrite nanoparticles are utilized in electronic domains to create sensors, biosensors, transducers, and transformers. Spinel ferrites are used in the treatment of wastewater, and they can be coupled with other nano materials for photocatalysis and adsorption. In this review, attention has been paid to the synthesis, distinctive characteristics, and various applications of spinel ferrites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat U. Riaz, S. Gaffar, K. Hauser, F. Yan, Visible-light induced degradation of diphenyl urea and polyethylene using polythiophene decorated CuFe2O4 nanohybrids. Sci. Rep. 13, 4975 (2023)CrossRef U. Riaz, S. Gaffar, K. Hauser, F. Yan, Visible-light induced degradation of diphenyl urea and polyethylene using polythiophene decorated CuFe2O4 nanohybrids. Sci. Rep. 13, 4975 (2023)CrossRef
2.
Zurück zum Zitat J. Zia, U. Riaz, Studies on the spectral, morphological and magnetic properties of PCz-PPy copolymer encapsulated BaFe2O4 nanohybrids. J. Mater. Sci. Mater. Elect. 31, 22856–22865 (2020)CrossRef J. Zia, U. Riaz, Studies on the spectral, morphological and magnetic properties of PCz-PPy copolymer encapsulated BaFe2O4 nanohybrids. J. Mater. Sci. Mater. Elect. 31, 22856–22865 (2020)CrossRef
3.
Zurück zum Zitat U. Riaz, S.M. Ashraf, J. Kashyap, Enhancement of photocatalytic properties of transitional metal oxides using conducting polymers: A mini review. Mater. Res. Bull. 71, 75–90 (2015)CrossRef U. Riaz, S.M. Ashraf, J. Kashyap, Enhancement of photocatalytic properties of transitional metal oxides using conducting polymers: A mini review. Mater. Res. Bull. 71, 75–90 (2015)CrossRef
4.
Zurück zum Zitat U. Riaz, S.M. Ashraf, E.S. Aazam, Microwave-assisted catalytic activity of superparamagnetic spinel ferrites. J. Chem. Technol. Biotechnol. 96(10), 2792–2801 (2021)CrossRef U. Riaz, S.M. Ashraf, E.S. Aazam, Microwave-assisted catalytic activity of superparamagnetic spinel ferrites. J. Chem. Technol. Biotechnol. 96(10), 2792–2801 (2021)CrossRef
5.
Zurück zum Zitat U. Riaz, S.M. Ashraf, R. Raza, K. Kohli, J. Kashyap, Sonochemical Facile Synthesis of Self-Assembled Poly(o-phenylenediamine)/Cobalt Ferrite Nanohybrid with Enhanced Photocatalytic. Ind. Eng. Chem. Res. 55, 6300–6309 (2016)CrossRef U. Riaz, S.M. Ashraf, R. Raza, K. Kohli, J. Kashyap, Sonochemical Facile Synthesis of Self-Assembled Poly(o-phenylenediamine)/Cobalt Ferrite Nanohybrid with Enhanced Photocatalytic. Ind. Eng. Chem. Res. 55, 6300–6309 (2016)CrossRef
6.
Zurück zum Zitat J. Zia, M. Riyazuddin, E.S. Aazam, U. Riaz, Rapid catalytic degradation of amoxicillin drug using ZnFe2O4/PCz nanohybrids under microwave irradiation. Mater. Sci. Engg. B 261, 114713 (2020)CrossRef J. Zia, M. Riyazuddin, E.S. Aazam, U. Riaz, Rapid catalytic degradation of amoxicillin drug using ZnFe2O4/PCz nanohybrids under microwave irradiation. Mater. Sci. Engg. B 261, 114713 (2020)CrossRef
7.
Zurück zum Zitat J. Zia, S.M. Farhat, E.S. Aazam, U. Riaz, Highly efficient degradation of metronidazole drug using CaFe2O4/PNA nanohybrids as metal-organic catalysts under microwave irradiation. Env. Sci. Poll. Res. 28, 4125–4135 (2021)CrossRef J. Zia, S.M. Farhat, E.S. Aazam, U. Riaz, Highly efficient degradation of metronidazole drug using CaFe2O4/PNA nanohybrids as metal-organic catalysts under microwave irradiation. Env. Sci. Poll. Res. 28, 4125–4135 (2021)CrossRef
8.
Zurück zum Zitat J. Zia, E.S. Aazamand U. Riaz, Facile synthesis of MnO2 nanorods and ZnMn2O4 nanohexagons: a comparison of microwave-assisted catalytic activity against 4-nitrophenol degradation, J. Mater. Res. Technol. 9(5), 9709–9719 (2020) J. Zia, E.S. Aazamand U. Riaz, Facile synthesis of MnO2 nanorods and ZnMn2O4 nanohexagons: a comparison of microwave-assisted catalytic activity against 4-nitrophenol degradation, J. Mater. Res. Technol. 9(5), 9709–9719 (2020)
9.
Zurück zum Zitat A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)CrossRef A. Šutka, K.A. Gross, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)CrossRef
10.
Zurück zum Zitat K.L. Routray, S. Saha, D. Behera, Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices. Mater. Chem. Phys. 224, 29–35 (2019)CrossRef K.L. Routray, S. Saha, D. Behera, Green synthesis approach for nano sized CoFe2O4 through aloe vera mediated sol-gel auto combustion method for high frequency devices. Mater. Chem. Phys. 224, 29–35 (2019)CrossRef
11.
Zurück zum Zitat J.L. Domínguez-Arvizu, J.A. Jiménez-Miramontes, J.M. Salinas-Gutiérrez, M.J. Meléndez-Zaragoza, A. López-Ortiz, V. Collins-Martínez, Study of NiFe2O4 nanoparticles optical properties by a six-flux radiation model towards the photocatalytic hydrogen production. Int. J. Hydrogen Energy. 44, 12455–12462 (2019)CrossRef J.L. Domínguez-Arvizu, J.A. Jiménez-Miramontes, J.M. Salinas-Gutiérrez, M.J. Meléndez-Zaragoza, A. López-Ortiz, V. Collins-Martínez, Study of NiFe2O4 nanoparticles optical properties by a six-flux radiation model towards the photocatalytic hydrogen production. Int. J. Hydrogen Energy. 44, 12455–12462 (2019)CrossRef
12.
Zurück zum Zitat M.T.M. Pendergast, J.M. Nygaard, A.K. Ghosh, E.M.V. Hoek, Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261, 255–263 (2010)CrossRef M.T.M. Pendergast, J.M. Nygaard, A.K. Ghosh, E.M.V. Hoek, Using nanocomposite materials technology to understand and control reverse osmosis membrane compaction. Desalination 261, 255–263 (2010)CrossRef
13.
Zurück zum Zitat Q.H. Ng, J.K. Lim, A.L. Ahmad, B.S. Ooi, S.C. Low, Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation. J. Memb. Sci. 493, 134–146 (2015)CrossRef Q.H. Ng, J.K. Lim, A.L. Ahmad, B.S. Ooi, S.C. Low, Magnetic nanoparticles augmented composite membranes in removal of organic foulant through magnetic actuation. J. Memb. Sci. 493, 134–146 (2015)CrossRef
14.
Zurück zum Zitat M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Appl. Catal. B Environ. 176–177, 249–265 (2015)CrossRef M. Munoz, Z.M. de Pedro, J.A. Casas, J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation – A review. Appl. Catal. B Environ. 176–177, 249–265 (2015)CrossRef
15.
Zurück zum Zitat P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 181, 103–117 (2016)CrossRef P. Hu, M. Long, Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Appl. Catal. B Environ. 181, 103–117 (2016)CrossRef
16.
Zurück zum Zitat M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nano-materials. Arab. J. Chem. 12, 4897–4919 (2019)CrossRef M. Anjum, R. Miandad, M. Waqas, F. Gehany, M.A. Barakat, Remediation of wastewater using various nano-materials. Arab. J. Chem. 12, 4897–4919 (2019)CrossRef
17.
Zurück zum Zitat G. Li, X. Nie, Y. Gao, T. An, Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?—Implications of persistent toxic intermediates. Appl. Catal. B Environ. 180, 726–732 (2016)CrossRef G. Li, X. Nie, Y. Gao, T. An, Can environmental pharmaceuticals be photocatalytically degraded and completely mineralized in water using g-C3N4/TiO2 under visible light irradiation?—Implications of persistent toxic intermediates. Appl. Catal. B Environ. 180, 726–732 (2016)CrossRef
18.
Zurück zum Zitat S. Dabagh, S.A. Haris, Y.N. Ertas, Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles. J. Clust. Sci. 34, 2067–2078 (2023)CrossRef S. Dabagh, S.A. Haris, Y.N. Ertas, Synthesis, Characterization and Potent Antibacterial Activity of Metal-Substituted Spinel Ferrite Nanoparticles. J. Clust. Sci. 34, 2067–2078 (2023)CrossRef
19.
Zurück zum Zitat M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)CrossRef M.I.A.A. Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.A. Elsayed, M. Gobara, A.M. El-Khawaga, E.K. Abdel-Khalek, M.M. El-Okr, Antibacterial, antibiofilm, and photocatalytic activities of metals-substituted spinel cobalt ferrite nanoparticles. Microb. Pathog. 127, 144–158 (2019)CrossRef
20.
Zurück zum Zitat M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1-x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C. 92, 644–656 (2018) M.I.A. Abdel Maksoud, G.S. El-Sayyad, A.H. Ashour, A.I. El-Batal, M.S. Abd-Elmonem, H.A.M. Hendawy, E.K. Abdel-Khalek, S. Labib, E. Abdeltwab, M.M. El-Okr, Synthesis and characterization of metals-substituted cobalt ferrite [Mx Co(1-x) Fe2O4; (M = Zn, Cu and Mn; x = 0 and 0.5)] nanoparticles as antimicrobial agents and sensors for Anagrelide determination in biological samples. Mater. Sci. Eng. C. 92, 644–656 (2018)
21.
Zurück zum Zitat G. Mamba, A. Mishra, Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation, Catalysts. 6 (2016) 79. [34]B.F.G. Johnson, Nanoparticles in Catalysis. Top. Catal. 24, 147–159 (2003) G. Mamba, A. Mishra, Advances in Magnetically Separable Photocatalysts: Smart, Recyclable Materials for Water Pollution Mitigation, Catalysts. 6 (2016) 79. [34]B.F.G. Johnson, Nanoparticles in Catalysis. Top. Catal. 24, 147–159 (2003)
22.
Zurück zum Zitat J. Govan, Y. Gun’ko, Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts. Nanomaterials. 4, 222–241 (2014) J. Govan, Y. Gun’ko, Recent Advances in the Application of Magnetic Nanoparticles as a Support for Homogeneous Catalysts. Nanomaterials. 4, 222–241 (2014)
23.
Zurück zum Zitat M.B. Gawande, Y. Monga, R. Zboril, R.K. Sharma, Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 288, 118–143 (2015)CrossRef M.B. Gawande, Y. Monga, R. Zboril, R.K. Sharma, Silica-decorated magnetic nanocomposites for catalytic applications. Coord. Chem. Rev. 288, 118–143 (2015)CrossRef
24.
Zurück zum Zitat J.G. Parsons, M.L. Lopez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem. J. 91, 100–106 (2009)CrossRef J.G. Parsons, M.L. Lopez, J.R. Peralta-Videa, J.L. Gardea-Torresdey, Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem. J. 91, 100–106 (2009)CrossRef
25.
Zurück zum Zitat S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158, 599–607 (2010)CrossRef S. Zhang, H. Niu, Y. Cai, X. Zhao, Y. Shi, Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 158, 599–607 (2010)CrossRef
26.
Zurück zum Zitat S. Verma, D. Verma, A.K. Sinha, S.L. Jain, Palladium complex immobilized on graphene oxide–magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl. Catal. A Gen. 489, 17–23 (2015)CrossRef S. Verma, D. Verma, A.K. Sinha, S.L. Jain, Palladium complex immobilized on graphene oxide–magnetic nanoparticle composites for ester synthesis by aerobic oxidative esterification of alcohols. Appl. Catal. A Gen. 489, 17–23 (2015)CrossRef
27.
Zurück zum Zitat R.B. Nasir Baig, R.S. Varma, Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustain. Chem. Eng. 1, 805–809 (2013) R.B. Nasir Baig, R.S. Varma, Magnetic Silica-Supported Ruthenium Nanoparticles: An Efficient Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustain. Chem. Eng. 1, 805–809 (2013)
28.
Zurück zum Zitat A. Hussain, T. Abbas, S.B. Niazi, Preparation of Ni1−Mn Fe2O4 ferrites by sol–gel method and study of their cation distribution. Ceram. Int. 39, 1221–1225 (2013)CrossRef A. Hussain, T. Abbas, S.B. Niazi, Preparation of Ni1−Mn Fe2O4 ferrites by sol–gel method and study of their cation distribution. Ceram. Int. 39, 1221–1225 (2013)CrossRef
29.
Zurück zum Zitat V. Kusigerski, E. Illes, J. Blanusa, S. Gyergyek, M. Boskovic, M. Perovic, V. Spasojevic, Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. J. Magn. Magn. Mater. 475, 470–478 (2019)CrossRef V. Kusigerski, E. Illes, J. Blanusa, S. Gyergyek, M. Boskovic, M. Perovic, V. Spasojevic, Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. J. Magn. Magn. Mater. 475, 470–478 (2019)CrossRef
30.
Zurück zum Zitat T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles. Nanoscale Res. Lett. 12, 141 (2017)CrossRef T. Tatarchuk, M. Bououdina, W. Macyk, O. Shyichuk, N. Paliychuk, I. Yaremiy, B. Al-Najar, M. Pacia, Structural, Optical, and Magnetic Properties of Zn-Doped CoFe2O4 Nanoparticles. Nanoscale Res. Lett. 12, 141 (2017)CrossRef
31.
Zurück zum Zitat D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016)CrossRef D.H.K. Reddy, Y.-S. Yun, Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev. 315, 90–111 (2016)CrossRef
32.
Zurück zum Zitat S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren, L. Deng, Spinel photocatalysts for environmental remediation, hydrogen generation, CO 2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A. 6, 11078–11104 (2018)CrossRef S. Chandrasekaran, C. Bowen, P. Zhang, Z. Li, Q. Yuan, X. Ren, L. Deng, Spinel photocatalysts for environmental remediation, hydrogen generation, CO 2 reduction and photoelectrochemical water splitting. J. Mater. Chem. A. 6, 11078–11104 (2018)CrossRef
33.
Zurück zum Zitat B. Issa, I. Obaidat, B. Albiss, Y. Haik, Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)CrossRef B. Issa, I. Obaidat, B. Albiss, Y. Haik, Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. Int. J. Mol. Sci. 14, 21266–21305 (2013)CrossRef
34.
Zurück zum Zitat M. Manjunatha, G. Srinivas Reddy, R. Damle, K.J. Mallikarjunaiah, K.P. Ramesh, Estimation of structural composition of the inverse spinel ferrites using 57Fe-Zero Field Nuclear Magnetic Resonance. Ceram. Int. 45, 9245–9253 (2019) M. Manjunatha, G. Srinivas Reddy, R. Damle, K.J. Mallikarjunaiah, K.P. Ramesh, Estimation of structural composition of the inverse spinel ferrites using 57Fe-Zero Field Nuclear Magnetic Resonance. Ceram. Int. 45, 9245–9253 (2019)
35.
Zurück zum Zitat F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis, Structural and Magnetic Properties of Spinel Ferrite Nanoparticles. J. Nanosci. Nanotechnol. 19, 4888–4902 (2019)CrossRef F.G. da Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis, Structural and Magnetic Properties of Spinel Ferrite Nanoparticles. J. Nanosci. Nanotechnol. 19, 4888–4902 (2019)CrossRef
36.
Zurück zum Zitat R. Jain, A Review on the Development of XRD in Ferrite Nanoparticles. J. Supercond. Nov. Magn. 35, 1033–1047 (2022)CrossRef R. Jain, A Review on the Development of XRD in Ferrite Nanoparticles. J. Supercond. Nov. Magn. 35, 1033–1047 (2022)CrossRef
37.
Zurück zum Zitat I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)CrossRef I.H. Gul, W. Ahmed, A. Maqsood, Electrical and magnetic characterization of nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route. J. Magn. Magn. Mater. 320, 270–275 (2008)CrossRef
38.
Zurück zum Zitat E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 87, 1–14 (2012)CrossRef E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: A review. Sep. Purif. Technol. 87, 1–14 (2012)CrossRef
39.
Zurück zum Zitat J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Cmpds. 479(1–2), 791–796 (2009) J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Cmpds. 479(1–2), 791–796 (2009)
40.
Zurück zum Zitat Z. Enlei, W. Jiaoyi, W. Guosheng, Z. Bengui, X. Yingpeng, Efficient Fenton Oxidation of Congo Red Dye by Magnetic MgFe2O4 Nanorods. J. Nanosci. Nanotechnol. 16, 4727–4732 (2016)CrossRef Z. Enlei, W. Jiaoyi, W. Guosheng, Z. Bengui, X. Yingpeng, Efficient Fenton Oxidation of Congo Red Dye by Magnetic MgFe2O4 Nanorods. J. Nanosci. Nanotechnol. 16, 4727–4732 (2016)CrossRef
41.
Zurück zum Zitat M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A. Demir Korkmaz, S.E. Shirsath, A. Baykal, Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019) M.A. Almessiere, Y. Slimani, S. Guner, M. Sertkol, A. Demir Korkmaz, S.E. Shirsath, A. Baykal, Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2−xO4 nano-spinel ferrites. Ultrason. Sonochem. 58, 104654 (2019)
42.
Zurück zum Zitat J.G. Ovejero, A. Mayoral, M. Cañete, M. García, A. Hernando, P. Herrasti, Electrochemical Synthesis and Magnetic Properties of MFe 2 O 4 (M = Fe, Mn Co, Ni) Nanoparticles for Potential Biomedical Applications. J. Nanosci. Nanotechnol. 19, 2008–2015 (2019)CrossRef J.G. Ovejero, A. Mayoral, M. Cañete, M. García, A. Hernando, P. Herrasti, Electrochemical Synthesis and Magnetic Properties of MFe 2 O 4 (M = Fe, Mn Co, Ni) Nanoparticles for Potential Biomedical Applications. J. Nanosci. Nanotechnol. 19, 2008–2015 (2019)CrossRef
43.
Zurück zum Zitat N. Kasapoglu, A. Baykal, Y. Koseoglu, M. Toprak, Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scr. Mater. 57, 441–444 (2007)CrossRef N. Kasapoglu, A. Baykal, Y. Koseoglu, M. Toprak, Microwave-assisted combustion synthesis of CoFe2O4 with urea, and its magnetic characterization. Scr. Mater. 57, 441–444 (2007)CrossRef
44.
Zurück zum Zitat S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819 (2011)CrossRef S. Singamaneni, V.N. Bliznyuk, C. Binek, E.Y. Tsymbal, Magnetic nanoparticles: recent advances in synthesis, self-assembly and applications. J. Mater. Chem. 21, 16819 (2011)CrossRef
45.
Zurück zum Zitat Y. Ju-Nam, J.R. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414 (2008)CrossRef Y. Ju-Nam, J.R. Lead, Manufactured nanoparticles: An overview of their chemistry, interactions and potential environmental implications. Sci. Total Environ. 400, 396–414 (2008)CrossRef
46.
Zurück zum Zitat L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 112, 5818–5878 (2012)CrossRef L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic Nanoparticles: Design and Characterization, Toxicity and Biocompatibility, Pharmaceutical and Biomedical Applications. Chem. Rev. 112, 5818–5878 (2012)CrossRef
47.
Zurück zum Zitat R.E. El-Shater, H. El Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, Synthesis, characterization, and magnetic properties of Mn nanoferrites. J. Alloys Compd. 928, 166954 (2022)CrossRef R.E. El-Shater, H. El Shimy, S.A. Saafan, M.A. Darwish, D. Zhou, A.V. Trukhanov, S.V. Trukhanov, F. Fakhry, Synthesis, characterization, and magnetic properties of Mn nanoferrites. J. Alloys Compd. 928, 166954 (2022)CrossRef
48.
Zurück zum Zitat K.R. Hurley, H.L. Ring, H. Kang, N.D. Klein, C.L. Haynes, Characterization of Magnetic Nanoparticles in Biological Matrices. Anal. Chem. 87, 11611–11619 (2015)CrossRef K.R. Hurley, H.L. Ring, H. Kang, N.D. Klein, C.L. Haynes, Characterization of Magnetic Nanoparticles in Biological Matrices. Anal. Chem. 87, 11611–11619 (2015)CrossRef
49.
Zurück zum Zitat B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58, 203–259 (2013)CrossRef B. Kong, Z.W. Li, L. Liu, R. Huang, M. Abshinova, Z.H. Yang, C.B. Tang, P.K. Tan, C.R. Deng, S. Matitsine, Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev. 58, 203–259 (2013)CrossRef
50.
Zurück zum Zitat S. Lee, X. Bi, R.B. Reed, J.F. Ranville, P. Herckes, P. Westerhoff, Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 48, 10291–10300 (2014)CrossRef S. Lee, X. Bi, R.B. Reed, J.F. Ranville, P. Herckes, P. Westerhoff, Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 48, 10291–10300 (2014)CrossRef
51.
Zurück zum Zitat R. Gabbasov, M. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, A. Lomov, A. Wang, V. Panchenko, Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles. J. Magn. Magn. Mater. 380, 111–116 (2015)CrossRef R. Gabbasov, M. Polikarpov, V. Cherepanov, M. Chuev, I. Mischenko, A. Lomov, A. Wang, V. Panchenko, Mössbauer, magnetization and X-ray diffraction characterization methods for iron oxide nanoparticles. J. Magn. Magn. Mater. 380, 111–116 (2015)CrossRef
52.
Zurück zum Zitat H. Li, L. Qin, Y. Feng, L. Hu, C. Zhou, Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate. J. Magn. Magn. Mater. 384, 213–218 (2015)CrossRef H. Li, L. Qin, Y. Feng, L. Hu, C. Zhou, Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate. J. Magn. Magn. Mater. 384, 213–218 (2015)CrossRef
53.
Zurück zum Zitat R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales, P. Herrasti, Electrochemical synthesis of NiFe2O4 nanoparticles: Characterization and their catalytic applications. J. Alloys Compd. 536, S241–S244 (2012)CrossRef R. Galindo, E. Mazario, S. Gutiérrez, M.P. Morales, P. Herrasti, Electrochemical synthesis of NiFe2O4 nanoparticles: Characterization and their catalytic applications. J. Alloys Compd. 536, S241–S244 (2012)CrossRef
54.
Zurück zum Zitat S. Fernández-Trujillo, N. Rodríguez-Fariñas, M. Jiménez-Moreno, R.D. Martín-Doimeadios, Speciation of platinum nanoparticles in different cell culture media by HPLC-ICP-TQ-MS and complementary techniques: A contribution to toxicological assays. Anal. Chim. Acta. 1182, 338935 (2021) S. Fernández-Trujillo, N. Rodríguez-Fariñas, M. Jiménez-Moreno, R.D. Martín-Doimeadios, Speciation of platinum nanoparticles in different cell culture media by HPLC-ICP-TQ-MS and complementary techniques: A contribution to toxicological assays. Anal. Chim. Acta. 1182, 338935 (2021)
55.
Zurück zum Zitat P. Samoila, C. Cojocaru, I. Cretescu, C.D. Stan, V. Nica, L. Sacarescu, V. Harabagiu, Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. J. Nanomater. 2015, 1–13 (2015)CrossRef P. Samoila, C. Cojocaru, I. Cretescu, C.D. Stan, V. Nica, L. Sacarescu, V. Harabagiu, Nanosized Spinel Ferrites Synthesized by Sol-Gel Autocombustion for Optimized Removal of Azo Dye from Aqueous Solution. J. Nanomater. 2015, 1–13 (2015)CrossRef
56.
Zurück zum Zitat H. Lee, T.-H. Shin, J. Cheon, R. Weissleder, Recent Developments in Magnetic Diagnostic Systems. Chem. Rev. 115, 10690–10724 (2015)CrossRef H. Lee, T.-H. Shin, J. Cheon, R. Weissleder, Recent Developments in Magnetic Diagnostic Systems. Chem. Rev. 115, 10690–10724 (2015)CrossRef
57.
Zurück zum Zitat D. Samuel, O.A. Abdelgawad, C. Moya, S.M. Vasey, D. Kepaptsoglou, V.K. Lazarov, R.F.L. Evans, D. Meilak, E. Skoropata, J. Lierop, I.H. Isaak, H. Pan, Y. Ijiri, K.L. Krycka, J.A. Borchers, S.A. Majetich, Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles. Sci. Rep. 8, 3425 (2018)CrossRef D. Samuel, O.A. Abdelgawad, C. Moya, S.M. Vasey, D. Kepaptsoglou, V.K. Lazarov, R.F.L. Evans, D. Meilak, E. Skoropata, J. Lierop, I.H. Isaak, H. Pan, Y. Ijiri, K.L. Krycka, J.A. Borchers, S.A. Majetich, Spin canting across core/shell Fe3O4/MnxFe3−xO4 nanoparticles. Sci. Rep. 8, 3425 (2018)CrossRef
58.
Zurück zum Zitat A. Vedrtnam, K. Kalauni, S. Dubey, A. Kumar, A comprehensive study on structure, properties, synthesis and characterization of ferrites. AIMS Mater. Sci. 7, 800–835 (2020)CrossRef A. Vedrtnam, K. Kalauni, S. Dubey, A. Kumar, A comprehensive study on structure, properties, synthesis and characterization of ferrites. AIMS Mater. Sci. 7, 800–835 (2020)CrossRef
59.
Zurück zum Zitat A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, S. Qourzai, N. Barka, Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants – A review. Appl. Surf. Sci. Adv. 6, 100145 (2021)CrossRef A. Soufi, H. Hajjaoui, R. Elmoubarki, M. Abdennouri, S. Qourzai, N. Barka, Spinel ferrites nanoparticles: Synthesis methods and application in heterogeneous Fenton oxidation of organic pollutants – A review. Appl. Surf. Sci. Adv. 6, 100145 (2021)CrossRef
60.
Zurück zum Zitat Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 13, 2287–2308 (2020) Y.P. Yew, K. Shameli, M. Miyake, N.B.B. Ahmad Khairudin, S.E.B. Mohamad, T. Naiki, K.X. Lee, Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 13, 2287–2308 (2020)
61.
Zurück zum Zitat S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ. Res. 216, 114500 (2023)CrossRef S. Latif, A. Liaqat, M. Imran, A. Javaid, N. Hussain, T. Jesionowski, M. Bilal, Development of zinc ferrite nanoparticles with enhanced photocatalytic performance for remediation of environmentally toxic pharmaceutical waste diclofenac sodium from wastewater. Environ. Res. 216, 114500 (2023)CrossRef
62.
Zurück zum Zitat M. Demirelli, E. Karaoglu, A. Baykal, H. Sozeri, M-hexaferrite–APTES/Pd(0) Magnetically Recyclable Nano Catalysts (MRCs). J. Inorg. Organomet. Polym. Mater. 23, 1274–1281 (2013)CrossRef M. Demirelli, E. Karaoglu, A. Baykal, H. Sozeri, M-hexaferrite–APTES/Pd(0) Magnetically Recyclable Nano Catalysts (MRCs). J. Inorg. Organomet. Polym. Mater. 23, 1274–1281 (2013)CrossRef
63.
Zurück zum Zitat R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151, 470–473 (2011)CrossRef R. Dom, R. Subasri, K. Radha, P.H. Borse, Synthesis of solar active nanocrystalline ferrite, MFe2O4 (M: Ca, Zn, Mg) photocatalyst by microwave irradiation. Solid State Commun. 151, 470–473 (2011)CrossRef
64.
Zurück zum Zitat S. Singh, S. Singhal, Transition metal doped cobalt ferrite nanoparticles: Efficient photocatalyst for photodegradation of textile dye. Mater. Today Proc. 14, 453–460 (2019)CrossRef S. Singh, S. Singhal, Transition metal doped cobalt ferrite nanoparticles: Efficient photocatalyst for photodegradation of textile dye. Mater. Today Proc. 14, 453–460 (2019)CrossRef
65.
Zurück zum Zitat M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 1 (2011)CrossRef M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 1 (2011)CrossRef
66.
Zurück zum Zitat T.K. Tseng, Y.S. Lin, Y.J. Chen, H. Chu, A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal. Int. J. Mol. Sci. 11, 2336–2361 (2010) T.K. Tseng, Y.S. Lin, Y.J. Chen, H. Chu, A Review of Photocatalysts Prepared by Sol-Gel Method for VOCs Removal. Int. J. Mol. Sci. 11, 2336–2361 (2010)
67.
Zurück zum Zitat S.-T. Yang, W. Zhang, J. Xie, R. Liao, X. Zhang, B. Yu, R. Wu, X. Liu, H. Li, Z. Guo, Fe3O4 @SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment. RSC Adv. 5, 5458–5463 (2015)CrossRef S.-T. Yang, W. Zhang, J. Xie, R. Liao, X. Zhang, B. Yu, R. Wu, X. Liu, H. Li, Z. Guo, Fe3O4 @SiO2 nanoparticles as a high-performance Fenton-like catalyst in a neutral environment. RSC Adv. 5, 5458–5463 (2015)CrossRef
68.
Zurück zum Zitat M. Abbas, B.P. Rao, V. Reddy, C. Kim, Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40, 11177–11186 (2014)CrossRef M. Abbas, B.P. Rao, V. Reddy, C. Kim, Fe3O4/TiO2 core/shell nanocubes: Single-batch surfactantless synthesis, characterization and efficient catalysts for methylene blue degradation. Ceram. Int. 40, 11177–11186 (2014)CrossRef
69.
Zurück zum Zitat S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R. Rai, M.A. Valente, P. Singh, Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization. Sep. Purif. Technol. 172, 498–511 (2017)CrossRef S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R. Rai, M.A. Valente, P. Singh, Superparamagnetic MnFe2O4 dispersed over graphitic carbon sand composite and bentonite as magnetically recoverable photocatalyst for antibiotic mineralization. Sep. Purif. Technol. 172, 498–511 (2017)CrossRef
70.
Zurück zum Zitat Z. Lu, M. He, L. Yang, Z. Ma, L. Yang, D. Wang, Y. Yan, W. Shi, Y. Liu, Z. Hua, Selective photodegradation of 2-mercaptobenzothiazole by a novel imprinted CoFe2O4 /MWCNTs photocatalyst. RSC Adv. 5, 47820–47829 (2015)CrossRef Z. Lu, M. He, L. Yang, Z. Ma, L. Yang, D. Wang, Y. Yan, W. Shi, Y. Liu, Z. Hua, Selective photodegradation of 2-mercaptobenzothiazole by a novel imprinted CoFe2O4 /MWCNTs photocatalyst. RSC Adv. 5, 47820–47829 (2015)CrossRef
71.
Zurück zum Zitat P. Xiong, J. Zhu, X. Wang, Cadmium Sulfide-Ferrite Nanocomposite as a Magnetically Recyclable Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Activity and Photostability. Ind. Eng. Chem. Res. 52, 17126–17133 (2013)CrossRef P. Xiong, J. Zhu, X. Wang, Cadmium Sulfide-Ferrite Nanocomposite as a Magnetically Recyclable Photocatalyst with Enhanced Visible-Light-Driven Photocatalytic Activity and Photostability. Ind. Eng. Chem. Res. 52, 17126–17133 (2013)CrossRef
Metadaten
Titel
Synthesis techniques and advance applications of spinel ferrites: A short review
verfasst von
Shayista Gaffar
Amit Kumar
Ufana Riaz
Publikationsdatum
15.09.2023
Verlag
Springer US
Erschienen in
Journal of Electroceramics / Ausgabe 4/2023
Print ISSN: 1385-3449
Elektronische ISSN: 1573-8663
DOI
https://doi.org/10.1007/s10832-023-00333-x

Weitere Artikel der Ausgabe 4/2023

Journal of Electroceramics 4/2023 Zur Ausgabe

Neuer Inhalt