Skip to main content
Erschienen in: Cluster Computing 4/2020

13.01.2020

SysDroid: a dynamic ML-based android malware analyzer using system call traces

verfasst von: A. Ananya, A. Aswathy, T. R. Amal, P. G. Swathy, P. Vinod, Shojafar Mohammad

Erschienen in: Cluster Computing | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Android is a popular open-source operating system highly susceptible to malware attacks. Researchers have developed machine learning models, learned from attributes extracted using static/dynamic approaches to identify malicious applications. However, such models suffer from low detection accuracy, due to the presence of noisy attributes, extracted from conventional feature selection algorithms. Hence, in this paper, a new feature selection mechanism known as selection of relevant attributes for improving locally extracted features using classical feature selectors (SAILS), is proposed. SAILS, targets on discovering prominent system calls from applications, and is built on the top of conventional feature selection methods, such as mutual information, distinguishing feature selector and Galavotti–Sebastiani–Simi. These classical attribute selection methods are used as local feature selectors. Besides, a novel global feature selection method known as, weighted feature selection is proposed. Comprehensive analysis of the proposed feature selectors, is conducted with the traditional methods. SAILS results in improved values for evaluation metrics, compared to the conventional feature selection algorithms for distinct machine learning models, developed using Logistic Regression, CART, Random Forest, XGBoost and Deep Neural Networks. Our evaluations observe accuracies ranging between 95 and 99% for dropout rate and learning rate in the range 0.1–0.8 and 0.001–0.2, respectively. Finally, the security evaluation of malware classifiers on adversarial examples are thoroughly investigated. A decline in accuracy with adversarial examples is observed. Also, SAILS recall rate of classifier subjected to such examples estimate in the range of 24.79–92.2%. However, prior to the attack, the true positive rate obtained by the classifier is reported between 95.2 and 99.79%. The results suggest that the hackers can bypass detection, by discovering the classifier blind spots, on augmenting a small number of legitimate attributes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Aafer, Y., Du, W., Yin, H.: Droidapiminer: mining api-level features for robust malware detection in android. In: International Conference on Security and Privacy in Communication Systems, pp. 86–103. Springer, Berlin (2013) Aafer, Y., Du, W., Yin, H.: Droidapiminer: mining api-level features for robust malware detection in android. In: International Conference on Security and Privacy in Communication Systems, pp. 86–103. Springer, Berlin (2013)
2.
Zurück zum Zitat Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B., de Geus, P.L.: Identifying android malware using dynamically obtained features. J. Comput. Virol. Hacking Tech. 11(1), 9–17 (2015)CrossRef Afonso, V.M., de Amorim, M.F., Grégio, A.R.A., Junquera, G.B., de Geus, P.L.: Identifying android malware using dynamically obtained features. J. Comput. Virol. Hacking Tech. 11(1), 9–17 (2015)CrossRef
3.
Zurück zum Zitat Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: effective and explainable detection of android malware in your pocket. Ndss 14, 23–26 (2014) Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K., Siemens, C.: Drebin: effective and explainable detection of android malware in your pocket. Ndss 14, 23–26 (2014)
4.
Zurück zum Zitat Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: Samadroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access 6, 4321–4339 (2018)CrossRef Arshad, S., Shah, M.A., Wahid, A., Mehmood, A., Song, H., Yu, H.: Samadroid: a novel 3-level hybrid malware detection model for android operating system. IEEE Access 6, 4321–4339 (2018)CrossRef
5.
Zurück zum Zitat Bhandari, S., Panihar, R., Naval, S., Laxmi, V., Zemmari, A., Gaur, M.S.: Sword: semantic aware android malware detector. J. Inf. Secur. Appl. 42, 46–56 (2018) Bhandari, S., Panihar, R., Naval, S., Laxmi, V., Zemmari, A., Gaur, M.S.: Sword: semantic aware android malware detector. J. Inf. Secur. Appl. 42, 46–56 (2018)
6.
Zurück zum Zitat Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G., Roli, F.: Evasion attacks against machine learning at test time. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 387–402. Springer, Berlin (2013) Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov, P., Giacinto, G., Roli, F.: Evasion attacks against machine learning at test time. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 387–402. Springer, Berlin (2013)
7.
8.
Zurück zum Zitat Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011) Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware detection system for android. In: Proceedings of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices, pp. 15–26. ACM (2011)
10.
Zurück zum Zitat Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In: 2015 IEEE Symposium on Security and Privacy, pp. 463–480. IEEE (2015) Cao, Y., Yang, J.: Towards making systems forget with machine unlearning. In: 2015 IEEE Symposium on Security and Privacy, pp. 463–480. IEEE (2015)
11.
Zurück zum Zitat Chen, L., Hou, S., Ye, Y., Chen, L.: An adversarial machine learning model against android malware evasion attacks. In: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, pp. 43–55. Springer, Berlin (2017) Chen, L., Hou, S., Ye, Y., Chen, L.: An adversarial machine learning model against android malware evasion attacks. In: Asia-Pacific Web (APWeb) and Web-Age Information Management (WAIM) Joint Conference on Web and Big Data, pp. 43–55. Springer, Berlin (2017)
12.
Zurück zum Zitat Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., Li, B.: Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput. Secur. 73, 326–344 (2018)CrossRef Chen, S., Xue, M., Fan, L., Hao, S., Xu, L., Zhu, H., Li, B.: Automated poisoning attacks and defenses in malware detection systems: an adversarial machine learning approach. Comput. Secur. 73, 326–344 (2018)CrossRef
13.
Zurück zum Zitat Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIQKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016) Chen, T., Guestrin, C.: Xgboost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIQKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM (2016)
14.
Zurück zum Zitat Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial examples for malware detection. In: European Symposium on Research in Computer Security, pp. 62–79. Springer, Berlin (2017) Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial examples for malware detection. In: European Symposium on Research in Computer Security, pp. 62–79. Springer, Berlin (2017)
15.
Zurück zum Zitat Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., Mao, L.: Maldae: detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Comput. Secur. 83, 208–233 (2019)CrossRef Han, W., Xue, J., Wang, Y., Huang, L., Kong, Z., Mao, L.: Maldae: detecting and explaining malware based on correlation and fusion of static and dynamic characteristics. Comput. Secur. 83, 208–233 (2019)CrossRef
16.
Zurück zum Zitat Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, New York (2013)CrossRef Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, vol. 398. Wiley, New York (2013)CrossRef
17.
Zurück zum Zitat Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4maldroid: a deep learning framework for android malware detection based on linux kernel system call graphs. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), pp. 104–111. IEEE (2016) Hou, S., Saas, A., Chen, L., Ye, Y.: Deep4maldroid: a deep learning framework for android malware detection based on linux kernel system call graphs. In: 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW), pp. 104–111. IEEE (2016)
18.
Zurück zum Zitat Hou, S., Saas, A., Ye, Y., Chen, L.: Droiddelver: an android malware detection system using deep belief network based on API call blocks. In: International Conference on Web-Age Information Management, pp. 54–66. Springer, Berlin (2016) Hou, S., Saas, A., Ye, Y., Chen, L.: Droiddelver: an android malware detection system using deep belief network based on API call blocks. In: International Conference on Web-Age Information Management, pp. 54–66. Springer, Berlin (2016)
19.
Zurück zum Zitat Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: Hindroid: an intelligent android malware detection system based on structured heterogeneous information network. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1507–1515. ACM (2017) Hou, S., Ye, Y., Song, Y., Abdulhayoglu, M.: Hindroid: an intelligent android malware detection system based on structured heterogeneous information network. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1507–1515. ACM (2017)
20.
Zurück zum Zitat Ishibashi, H., Hihara, S., Iriki, A.: Acquisition and development of monkey tool-use: behavioral and kinematic analyses. Can. J. Physiol. Pharmacol. 78(11), 958–966 (2000)CrossRef Ishibashi, H., Hihara, S., Iriki, A.: Acquisition and development of monkey tool-use: behavioral and kinematic analyses. Can. J. Physiol. Pharmacol. 78(11), 958–966 (2000)CrossRef
21.
Zurück zum Zitat Largeron, C., Moulin, C., Géry, M.: Entropy based feature selection for text categorization. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 924–928. ACM (2011) Largeron, C., Moulin, C., Géry, M.: Entropy based feature selection for text categorization. In: Proceedings of the 2011 ACM Symposium on Applied Computing, pp. 924–928. ACM (2011)
23.
Zurück zum Zitat Michael, S., Florian, E., Thomas, S., Felix, C.F., Hoffmann, J.: Mobilesandbox: looking deeper into android applications. In: Proceedings of the 28th International ACM Symposium on Applied Computing (SAC) (2013) Michael, S., Florian, E., Thomas, S., Felix, C.F., Hoffmann, J.: Mobilesandbox: looking deeper into android applications. In: Proceedings of the 28th International ACM Symposium on Applied Computing (SAC) (2013)
24.
Zurück zum Zitat Naway, A., Li, Y.: A review on the use of deep learning in android malware detection. arXiv preprint arXiv:1812.10360 (2018) Naway, A., Li, Y.: A review on the use of deep learning in android malware detection. arXiv preprint arXiv:1812.10360 (2018)
25.
Zurück zum Zitat Roundy, K.A., Miller, B.P.: Hybrid analysis and control of malware. In: International Workshop on Recent Advances in Intrusion Detection, pp. 317–338. Springer, Berlin (2010) Roundy, K.A., Miller, B.P.: Hybrid analysis and control of malware. In: International Workshop on Recent Advances in Intrusion Detection, pp. 317–338. Springer, Berlin (2010)
26.
Zurück zum Zitat Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)MathSciNetCrossRef Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 21(3), 660–674 (1991)MathSciNetCrossRef
27.
Zurück zum Zitat Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures for malware detection. ICEIS 2(9), 317–320 (2009) Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based file signatures for malware detection. ICEIS 2(9), 317–320 (2009)
28.
Zurück zum Zitat Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)MathSciNetMATH
29.
Zurück zum Zitat Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does machine learning FAIL? Generalized transferability for evasion and poisoning attacks. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 1299–1316 (2018) Suciu, O., Marginean, R., Kaya, Y., Daume III, H., Dumitras, T.: When does machine learning FAIL? Generalized transferability for evasion and poisoning attacks. In: 27th USENIX Security Symposium (USENIX Security 18), pp. 1299–1316 (2018)
30.
Zurück zum Zitat Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in android. J. Parallel Distrib. Comput. 103, 22–31 (2017)CrossRef Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in android. J. Parallel Distrib. Comput. 103, 22–31 (2017)CrossRef
32.
Zurück zum Zitat Wang, W., Zhao, M., Wang, J.: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. J. Ambient Intell. Humaniz. Comput. 10(8), 3035–3043 (2019)CrossRef Wang, W., Zhao, M., Wang, J.: Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural network. J. Ambient Intell. Humaniz. Comput. 10(8), 3035–3043 (2019)CrossRef
33.
Zurück zum Zitat Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: L2, 1-norm regularized discriminative feature selection for unsupervised. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011) Yang, Y., Shen, H.T., Ma, Z., Huang, Z., Zhou, X.: L2, 1-norm regularized discriminative feature selection for unsupervised. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)
34.
Zurück zum Zitat Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)CrossRef Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android malware characterization and detection using deep learning. Tsinghua Sci. Technol. 21(1), 114–123 (2016)CrossRef
35.
Zurück zum Zitat Zhang, J., Zhang, K., Qin, Z., Yin, H., Wu, Q.: Sensitive system calls based packed malware variants detection using principal component initialized multilayers neural networks. Cybersecurity 1(1), 10 (2018)CrossRef Zhang, J., Zhang, K., Qin, Z., Yin, H., Wu, Q.: Sensitive system calls based packed malware variants detection using principal component initialized multilayers neural networks. Cybersecurity 1(1), 10 (2018)CrossRef
36.
Zurück zum Zitat Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. ACM SIGKDD Explor. Newslett. 6(1), 80–89 (2004)CrossRef Zheng, Z., Wu, X., Srihari, R.: Feature selection for text categorization on imbalanced data. ACM SIGKDD Explor. Newslett. 6(1), 80–89 (2004)CrossRef
37.
Zurück zum Zitat Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109. IEEE (2012) Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: 2012 IEEE Symposium on Security and Privacy, pp. 95–109. IEEE (2012)
Metadaten
Titel
SysDroid: a dynamic ML-based android malware analyzer using system call traces
verfasst von
A. Ananya
A. Aswathy
T. R. Amal
P. G. Swathy
P. Vinod
Shojafar Mohammad
Publikationsdatum
13.01.2020
Verlag
Springer US
Erschienen in
Cluster Computing / Ausgabe 4/2020
Print ISSN: 1386-7857
Elektronische ISSN: 1573-7543
DOI
https://doi.org/10.1007/s10586-019-03045-6

Weitere Artikel der Ausgabe 4/2020

Cluster Computing 4/2020 Zur Ausgabe

Premium Partner