Skip to main content
Erschienen in: Computational Mechanics 1/2015

01.07.2015 | Original Paper

Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem

verfasst von: Peter Hansbo, Mats G. Larson, Fredrik Larsson

Erschienen in: Computational Mechanics | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We develop a finite element method for a large deformation membrane elasticity problem on meshed curved surfaces using a tangential differential calculus approach that avoids the use of classical differential geometric methods. The method is also applied to form finding problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Henceforth, we use the notation \(\{\bullet \}\) to indicate an implicit function.
 
2
Note that the first Piola Kirchhoff stress tensor is a two-point tensor with “legs” in both current and reference configurations.
 
3
For illustration, we here give the explicit component forms in the orhogonal \(XYZ\) and \(\xi \eta \zeta \) systems, respectively.
 
4
Note that \(\varvec{L}_{NN}\) is of second order.
 
Literatur
1.
Zurück zum Zitat Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Intern J Numer Methods Eng 2(3):419–451CrossRef Ahmad S, Irons BM, Zienkiewicz OC (1970) Analysis of thick and thin shell structures by curved finite elements. Intern J Numer Methods Eng 2(3):419–451CrossRef
2.
Zurück zum Zitat Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130(1–2):57–79MATHMathSciNetCrossRef Betsch P, Gruttmann F, Stein E (1996) A 4-node finite shell element for the implementation of general hyperelastic 3D-elasticity at finite strains. Comput Methods Appl Mech Eng 130(1–2):57–79MATHMathSciNetCrossRef
3.
Zurück zum Zitat Bletzinger K-U, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194(30–33):3438–3452MATHCrossRef Bletzinger K-U, Wüchner R, Daoud F, Camprubí N (2005) Computational methods for form finding and optimization of shells and membranes. Comput Methods Appl Mech Eng 194(30–33):3438–3452MATHCrossRef
4.
Zurück zum Zitat Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, CambridgeMATHCrossRef Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, CambridgeMATHCrossRef
5.
Zurück zum Zitat Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518 Campello EMB, Pimenta PM, Wriggers P (2003) A triangular finite shell element based on a fully nonlinear shell formulation. Comput Mech 31(6):505–518
6.
Zurück zum Zitat Chapelle D, Bathe KJ (2003) The finite element analysis of shells-fundamentals. Computational fluid and solid mechanics. Springer, BerlinCrossRef Chapelle D, Bathe KJ (2003) The finite element analysis of shells-fundamentals. Computational fluid and solid mechanics. Springer, BerlinCrossRef
8.
Zurück zum Zitat Ciarlet PG (2000) Mathematical elasticity. Vol. III, volume 29 of studies in mathematics and its applications. North-Holland Publishing Co., Amsterdam Ciarlet PG (2000) Mathematical elasticity. Vol. III, volume 29 of studies in mathematics and its applications. North-Holland Publishing Co., Amsterdam
9.
Zurück zum Zitat Delfour MC, Zolésio J-P (1995) A boundary differential equation for thin shells. J Differ Equ 119(2):426–449MATHCrossRef Delfour MC, Zolésio J-P (1995) A boundary differential equation for thin shells. J Differ Equ 119(2):426–449MATHCrossRef
10.
Zurück zum Zitat Delfour MC, Zolésio J-P (1997) Differential equations for linear shells: comparison between intrinsic and classical models. In: Advances in mathematical sciences: CRM’s 25 years (Montreal, PQ, 1994), volume 11 of CRM Proceedings, Lecture Notes, American Mathematical Society, Providence, pp 41–124 Delfour MC, Zolésio J-P (1997) Differential equations for linear shells: comparison between intrinsic and classical models. In: Advances in mathematical sciences: CRM’s 25 years (Montreal, PQ, 1994), volume 11 of CRM Proceedings, Lecture Notes, American Mathematical Society, Providence, pp 41–124
11.
12.
Zurück zum Zitat Monteiro EE, He Q-C, Yvonnet J (2011) Hyperelastic large deformations of two-phase composites with membrane-type interface. Int J Eng Sci 49(9):985–1000MATHCrossRef Monteiro EE, He Q-C, Yvonnet J (2011) Hyperelastic large deformations of two-phase composites with membrane-type interface. Int J Eng Sci 49(9):985–1000MATHCrossRef
13.
Zurück zum Zitat Hansbo P, Larson MG (2014) Finite element modeling of a linear membrane shell problem using tangential differential calculus. Comput Methods Appl Mech Eng 270:1–14MATHMathSciNetCrossRef Hansbo P, Larson MG (2014) Finite element modeling of a linear membrane shell problem using tangential differential calculus. Comput Methods Appl Mech Eng 270:1–14MATHMathSciNetCrossRef
14.
Zurück zum Zitat Hansbo P, Larson MG, Larsson K (2014) Variational formulation of curved beams in global coordinates. Comput Mech 53(4):611–623MATHMathSciNetCrossRef Hansbo P, Larson MG, Larsson K (2014) Variational formulation of curved beams in global coordinates. Comput Mech 53(4):611–623MATHMathSciNetCrossRef
15.
Zurück zum Zitat Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part I. Three dimensional shells. Comput Methods Appl Mech Eng 26(3):331–362MATHMathSciNetCrossRef Hughes TJR, Liu WK (1981) Nonlinear finite element analysis of shells: part I. Three dimensional shells. Comput Methods Appl Mech Eng 26(3):331–362MATHMathSciNetCrossRef
16.
Zurück zum Zitat Ibrahimbegović A, Gruttmann F (1993) A consistent finite element formulation of nonlinear membrane shell theory with particular reference to elastic rubberlike material. Finite Elem Anal Des 13(1):75–86MATHCrossRef Ibrahimbegović A, Gruttmann F (1993) A consistent finite element formulation of nonlinear membrane shell theory with particular reference to elastic rubberlike material. Finite Elem Anal Des 13(1):75–86MATHCrossRef
17.
Zurück zum Zitat Klinkel S, Govindjee S (2002) Using finite strain 3D-material models in beam and shell elements. Eng Comput 19(8):902–921MATHCrossRef Klinkel S, Govindjee S (2002) Using finite strain 3D-material models in beam and shell elements. Eng Comput 19(8):902–921MATHCrossRef
18.
Zurück zum Zitat Larsson F, Runesson K (2004) Modeling and discretization errors in hyperelasto-(visco-)plasticity with a view to hierarchical modeling. Comput Methods Appl Mech Eng 193(48–51):5283–5300MATHMathSciNetCrossRef Larsson F, Runesson K (2004) Modeling and discretization errors in hyperelasto-(visco-)plasticity with a view to hierarchical modeling. Comput Methods Appl Mech Eng 193(48–51):5283–5300MATHMathSciNetCrossRef
19.
Zurück zum Zitat Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: a geometrically exact finite element approach. Intern J Numer Methods Eng 78(9):1094–1112MATHMathSciNetCrossRef Pimenta PM, Campello EMB (2009) Shell curvature as an initial deformation: a geometrically exact finite element approach. Intern J Numer Methods Eng 78(9):1094–1112MATHMathSciNetCrossRef
20.
Zurück zum Zitat Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. II. The linear theory; computational aspects. Comput Methods Appl Mech Eng 73(1):53–92MATHMathSciNetCrossRef Simo JC, Fox DD, Rifai MS (1989) On a stress resultant geometrically exact shell model. II. The linear theory; computational aspects. Comput Methods Appl Mech Eng 73(1):53–92MATHMathSciNetCrossRef
Metadaten
Titel
Tangential differential calculus and the finite element modeling of a large deformation elastic membrane problem
verfasst von
Peter Hansbo
Mats G. Larson
Fredrik Larsson
Publikationsdatum
01.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 1/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1158-x

Weitere Artikel der Ausgabe 1/2015

Computational Mechanics 1/2015 Zur Ausgabe

Neuer Inhalt