Skip to main content
Erschienen in: Fluid Dynamics 2/2021

01.03.2021

Tangential Shear Stress under the Periodic Flow of a Viscoelastic Fluid in a Cylindrical Tube

verfasst von: Zh. A. Akilov, M. S. Dzhabbarov, B. Kh. Khuzhayorov

Erschienen in: Fluid Dynamics | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract—

The problem of investigation of unsteady tangential shear stress under the periodic laminar flow of a viscoelastic fluid in a cylindrical tube is considered on the basis of the Maxwell model. Formulas for the dynamic-response and frequency characteristics are obtained. The effect of the oscillation frequency, the acceleration, and the relaxation properties of fluid on the tangential shear stress is studied by means of numerical experiments. It is shown that the viscoelastic properties of fluid, as well as its acceleration, act as the limiting factors for using the quasi-stationary approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akilov, Zh.A., Nestatysionarnye dvizheniya vyazkouprugikh zhidkostei (Unsteady Flows of Viscoelastic Fluids), Tashkent: Fan, 1982. Akilov, Zh.A., Nestatysionarnye dvizheniya vyazkouprugikh zhidkostei (Unsteady Flows of Viscoelastic Fluids), Tashkent: Fan, 1982.
2.
Zurück zum Zitat Khuzhayorov, B.Kh., Reologicheskie svoistva smesei (Rheological Properties of Mixtures), Samarkand: Sogdiana, 2000. Khuzhayorov, B.Kh., Reologicheskie svoistva smesei (Rheological Properties of Mixtures), Samarkand: Sogdiana, 2000.
3.
Zurück zum Zitat Mirzadzhanzade, A.Kh., Karaev, A.K., and Shirinzade, S.A., Gidravlika v burenii i tsementirovanii neftyanykh i gazovykh skvazhin (Hydraulics in Oil and Gas Well Drilling and Cementing), Moscow: Nedra, 1977. Mirzadzhanzade, A.Kh., Karaev, A.K., and Shirinzade, S.A., Gidravlika v burenii i tsementirovanii neftyanykh i gazovykh skvazhin (Hydraulics in Oil and Gas Well Drilling and Cementing), Moscow: Nedra, 1977.
4.
Zurück zum Zitat Ametov, I.M., Baidikov, Yu.N., Ruzin, L.M., et al., Dobycha tyazhelykh i vysokovyazkikh zhidkostei (Recovery of Heavy and High-Viscosity Liquids), Moscow: Nedra, 1985. Ametov, I.M., Baidikov, Yu.N., Ruzin, L.M., et al., Dobycha tyazhelykh i vysokovyazkikh zhidkostei (Recovery of Heavy and High-Viscosity Liquids), Moscow: Nedra, 1985.
5.
Zurück zum Zitat Astarista, G. and Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, New York: McGraw-Hill, 1974. Astarista, G. and Marrucci, G., Principles of Non-Newtonian Fluid Mechanics, New York: McGraw-Hill, 1974.
6.
Zurück zum Zitat Siginer, D.A., Developments in the Flow of Complex Fluids in Tubes, Springer, 2015.CrossRef Siginer, D.A., Developments in the Flow of Complex Fluids in Tubes, Springer, 2015.CrossRef
7.
Zurück zum Zitat Chhabra, R.P. and Richardson, J.F. Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann/IChemE, 2nd ed., 2008. Chhabra, R.P. and Richardson, J.F. Non-Newtonian Flow and Applied Rheology: Engineering Applications, Butterworth-Heinemann/IChemE, 2nd ed., 2008.
8.
Zurück zum Zitat Harris, J., Peev, G., and Wilkinson, W.L., Velocity profiles in laminar oscillatory flow in tubes, J. Scientific Instruments (J. Physics E), 1969, Ser. 2, vol. 2, pp. 913–916. Harris, J., Peev, G., and Wilkinson, W.L., Velocity profiles in laminar oscillatory flow in tubes, J. Scientific Instruments (J. Physics E), 1969, Ser. 2, vol. 2, pp. 913–916.
9.
Zurück zum Zitat Sergeev, S., Fluid oscillations in pipes at moderate Reynolds numbers, Fluid Dynamics, 1966, vol. 1, no. 1, pp. 121–122.ADSCrossRef Sergeev, S., Fluid oscillations in pipes at moderate Reynolds numbers, Fluid Dynamics, 1966, vol. 1, no. 1, pp. 121–122.ADSCrossRef
10.
Zurück zum Zitat Ahn, K.H. and Ibrahim, M.B., Laminar/turbulent oscillating flow in circular pipes, Int. J. Heat Fluid Flow, 1992, vol. 13, no. 4, pp. 340–346.ADSCrossRef Ahn, K.H. and Ibrahim, M.B., Laminar/turbulent oscillating flow in circular pipes, Int. J. Heat Fluid Flow, 1992, vol. 13, no. 4, pp. 340–346.ADSCrossRef
11.
Zurück zum Zitat Jones, J.R. and Walters, T.S., Flow of elastico-viscous liquids in channels under the influence of a periodic pressure gradient, Part 1, Rheol. Acta, 1967, vol. 6, pp. 240–245.CrossRef Jones, J.R. and Walters, T.S., Flow of elastico-viscous liquids in channels under the influence of a periodic pressure gradient, Part 1, Rheol. Acta, 1967, vol. 6, pp. 240–245.CrossRef
12.
Zurück zum Zitat Khabakhpasheva, E., Popov, V., Kekalov, A., and Mikhailova, E., Pulsating flow of viscoelastic fluids in tubes, J. Non-Newtonian Fluid Mech., 1989, vol. 33 (3), pp. 289–304.CrossRef Khabakhpasheva, E., Popov, V., Kekalov, A., and Mikhailova, E., Pulsating flow of viscoelastic fluids in tubes, J. Non-Newtonian Fluid Mech., 1989, vol. 33 (3), pp. 289–304.CrossRef
13.
Zurück zum Zitat Casanellas, L. and Ortıґn, J., Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: Theoretical analysis, J. Non-Newtonian Fluid Mech., 2011, vol. 166, pp. 1315–1326.CrossRef Casanellas, L. and Ortıґn, J., Laminar oscillatory flow of Maxwell and Oldroyd-B fluids: Theoretical analysis, J. Non-Newtonian Fluid Mech., 2011, vol. 166, pp. 1315–1326.CrossRef
14.
Zurück zum Zitat Andrienko, Yu.A., Siginer D.A., and Yanovsky Yu.G., Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement, Int. J. Non-Linear Mech., 2000, vol. 35, pp. 95–102.MathSciNetCrossRef Andrienko, Yu.A., Siginer D.A., and Yanovsky Yu.G., Resonance behavior of viscoelastic fluids in Poiseuille flow and application to flow enhancement, Int. J. Non-Linear Mech., 2000, vol. 35, pp. 95–102.MathSciNetCrossRef
15.
Zurück zum Zitat Letelier, M.F., Siginer D.A., and Caceres, C., Pulsating flow of viscoelastic fluids in straight tubes of arbitrary cross-section. Part I: Longitudinal field, Int. J. Non-Linear Mech., 2002, vol. 37, pp. 369–393.CrossRef Letelier, M.F., Siginer D.A., and Caceres, C., Pulsating flow of viscoelastic fluids in straight tubes of arbitrary cross-section. Part I: Longitudinal field, Int. J. Non-Linear Mech., 2002, vol. 37, pp. 369–393.CrossRef
16.
Zurück zum Zitat Hassan, A. Abu-El and El-Maghawry, E. M., Unsteady axial viscoelastic pipe flows of an Oldroyd B fluid, in: Rheology—New Concepts, Applications and Methods, Ed. by Durairaj R., Published by InTech., 2013, Ch. 6., pp. 91–106. Hassan, A. Abu-El and El-Maghawry, E. M., Unsteady axial viscoelastic pipe flows of an Oldroyd B fluid, in: Rheology—New Concepts, Applications and Methods, Ed. by Durairaj R., Published by InTech., 2013, Ch. 6., pp. 91–106.
17.
Zurück zum Zitat Friedrich, C., Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 1991, vol. 30, pp. 151–158. Friedrich, C., Relaxation and retardation functions of the Maxwell model with fractional derivatives, Rheol. Acta, 1991, vol. 30, pp. 151–158.
18.
Zurück zum Zitat Mainardi, F. and Goren, R., Time-fractional derivatives in relaxation processes: a tutorial survey, Fractional Calculus and Applied Analysis, 2007, vol. 10, no. 3, pp. 269–308.MathSciNetMATH Mainardi, F. and Goren, R., Time-fractional derivatives in relaxation processes: a tutorial survey, Fractional Calculus and Applied Analysis, 2007, vol. 10, no. 3, pp. 269–308.MathSciNetMATH
19.
Zurück zum Zitat Hilfer, R., Applications of Fractional Calculus in Physics, Singapore: World Scientific Press, 2000.CrossRef Hilfer, R., Applications of Fractional Calculus in Physics, Singapore: World Scientific Press, 2000.CrossRef
20.
Zurück zum Zitat Makris, N., Dargush, G.F., and Constantinou, M.C., Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 1993, vol. 119(8), pp. 1663–1679.CrossRef Makris, N., Dargush, G.F., and Constantinou, M.C., Dynamic analysis of generalized viscoelastic fluids, J. Eng. Mech., 1993, vol. 119(8), pp. 1663–1679.CrossRef
21.
Zurück zum Zitat Wenchang, T. and Mingyu, X., Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates, Acta Mechanica Sinica, 2004, vol. 20, no. 5, pp. 471–476.MathSciNetCrossRef Wenchang, T. and Mingyu, X., Unsteady flows of a generalized second grade fluid with the fractional derivative model between two parallel plates, Acta Mechanica Sinica, 2004, vol. 20, no. 5, pp. 471–476.MathSciNetCrossRef
23.
Zurück zum Zitat Yushutin, V.S., Stability of flow of a nonlinear viscous power-law hardening medium in a deformable channel, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 2012, vol. 67, no. 4, pp. 67–70. Yushutin, V.S., Stability of flow of a nonlinear viscous power-law hardening medium in a deformable channel, Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., 2012, vol. 67, no. 4, pp. 67–70.
25.
Zurück zum Zitat Popov, D.N., Generalized equation for determining tangential stresses on the pipe wall under unsteady viscous fluid flow, Izv Vuzov, Ser. Mashinostroenie, 1967, no. 5, pp. 52–57. Popov, D.N., Generalized equation for determining tangential stresses on the pipe wall under unsteady viscous fluid flow, Izv Vuzov, Ser. Mashinostroenie, 1967, no. 5, pp. 52–57.
26.
Zurück zum Zitat Ditkin, V.A. and Prudnikov, A.P., Operatsionnoe ischislenie (Operational Calculus), Moscow: Nauka, 1975. Ditkin, V.A. and Prudnikov, A.P., Operatsionnoe ischislenie (Operational Calculus), Moscow: Nauka, 1975.
27.
Zurück zum Zitat Popov, D.N., Nestatsionarnye gidromekhanicheskie protsessy (Unsteady Hydrodynamic Processes), Moscow: Mashinostroenie, 1982. Popov, D.N., Nestatsionarnye gidromekhanicheskie protsessy (Unsteady Hydrodynamic Processes), Moscow: Mashinostroenie, 1982.
28.
Zurück zum Zitat Richardson, E.G., Dynamics of Real Fluids, London: Arnold, 1961. Richardson, E.G., Dynamics of Real Fluids, London: Arnold, 1961.
29.
Zurück zum Zitat Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of Theory of Functions of a Complex Variable), Moscow: Nauka, 1987. Lavrent’ev, M.A. and Shabat, B.V., Metody teorii funktsii kompleksnogo peremennogo (Methods of Theory of Functions of a Complex Variable), Moscow: Nauka, 1987.
Metadaten
Titel
Tangential Shear Stress under the Periodic Flow of a Viscoelastic Fluid in a Cylindrical Tube
verfasst von
Zh. A. Akilov
M. S. Dzhabbarov
B. Kh. Khuzhayorov
Publikationsdatum
01.03.2021
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 2/2021
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462821020014

Weitere Artikel der Ausgabe 2/2021

Fluid Dynamics 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.