Skip to main content
Erschienen in: Wireless Personal Communications 4/2023

13.07.2023

Techniques, Answers, and Real-World UAV Implementations for Precision Farming

verfasst von: Ashish Srivastava, Jay Prakash

Erschienen in: Wireless Personal Communications | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In adopting state-of-the-art technologies, a domain known in time is Agriculture for fertility optimization, expense saving, assistance, and environmental safeguard. In this aspect, deploying UAVs remains a modern example in the Agriculture sector, encompassing various possibilities at ease. Concerning innovations, UAV (drone) invention remains the standard talked-about technology. UAV’s broader view includes drone ranges like micro, mini, small, and medium aerial vehicles. Initially developed applications for the military now have used assistance like firefighting, courier services, mob surveillance, facial recognition, and many more. Within the paper, UAV applications in agriculture are of primary interest, with a notable centre of attention being crop farming. This paper presents a comprehensive survey on UAV types, crop health, agricultural sensors, remote sensing with UAVs, animal marking, pesticide sprinkling, other possible agricultural use, and Precision Agriculture. We explore the approach utilized for each UAV type application and the UAV technical characteristics and payload. Beyond uses, UAV’s services and implied advantages within agriculture are further exhibited beside talks on business correlated hurdles and additional apparent difficulties limiting the broad adoption of UAVs into agriculture. The belief of the work done in the paper will prove worthwhile to Researchers working on an amalgamation of UAVs in PA. With our work, they can make a necessary spontaneous understanding of the agricultural aspect and how it should work. Those farmers attempting modernized agricultural method optimization approaches on various levels by this work benefit from new ways of using UAVs within their farming. UAV businesses exploring innovative UAV use capacities can examine the future concerning the UAV run in agriculture furthermore strengthen their endeavours within the trend.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712.
2.
Zurück zum Zitat Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85. Pierce, F. J., & Nowak, P. (1999). Aspects of precision agriculture. Advances in Agronomy, 67, 1–85.
3.
Zurück zum Zitat R. Raj, S. Kar, R. Nandan, A. Jagarlapudi, Precision agriculture and unmanned aerial vehicles (uavs), in: Unmanned aerial vehicle: Applications in agriculture and environment, Springer, 2020, pp. 7–23. R. Raj, S. Kar, R. Nandan, A. Jagarlapudi, Precision agriculture and unmanned aerial vehicles (uavs), in: Unmanned aerial vehicle: Applications in agriculture and environment, Springer, 2020, pp. 7–23.
4.
Zurück zum Zitat Carolan, M. (2017). Publicising food: Big data, precision agriculture, and co-experimental techniques of addition. Sociologia Ruralis, 57(2), 135–154. Carolan, M. (2017). Publicising food: Big data, precision agriculture, and co-experimental techniques of addition. Sociologia Ruralis, 57(2), 135–154.
6.
Zurück zum Zitat Lillesand, T. Kiefer, R. W. Chipman, J. (2015) Remote sensing and image interpretation, John Wiley & Sons. Lillesand, T. Kiefer, R. W. Chipman, J. (2015) Remote sensing and image interpretation, John Wiley & Sons.
7.
Zurück zum Zitat Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogrammetric Engineering & Remote Sensing, 81(4), 281–330. Pajares, G. (2015). Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogrammetric Engineering & Remote Sensing, 81(4), 281–330.
8.
Zurück zum Zitat Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8–19. Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture, 116, 8–19.
9.
Zurück zum Zitat Chen, S., Laefer, D. F., & Mangina, E. (2016). State of technology review of civilian uavs. Recent Patents on Engineering, 10(3), 160–174. Chen, S., Laefer, D. F., & Mangina, E. (2016). State of technology review of civilian uavs. Recent Patents on Engineering, 10(3), 160–174.
10.
Zurück zum Zitat Brisco, B., Brown, R., Hirose, T., McNairn, H., & Staenz, K. (1998). Precision agriculture and the role of remote sensing: A review. Canadian Journal of Remote Sensing, 24(3), 315–327. Brisco, B., Brown, R., Hirose, T., McNairn, H., & Staenz, K. (1998). Precision agriculture and the role of remote sensing: A review. Canadian Journal of Remote Sensing, 24(3), 315–327.
11.
Zurück zum Zitat Xue, J., Su, B. (2017) Significant remote sensing vegetation indices: A review of developments and applications, Journal of sensors 2017. Xue, J., Su, B. (2017) Significant remote sensing vegetation indices: A review of developments and applications, Journal of sensors 2017.
12.
Zurück zum Zitat Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45(4), 184–190. Tucker, C. J., Slayback, D. A., Pinzon, J. E., Los, S. O., Myneni, R. B., & Taylor, M. G. (2001). Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. International Journal of Biometeorology, 45(4), 184–190.
13.
Zurück zum Zitat Townshend, J. R., & Justice, C. (1986). Analysis of the dynamics of african vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445. Townshend, J. R., & Justice, C. (1986). Analysis of the dynamics of african vegetation using the normalized difference vegetation index. International Journal of Remote Sensing, 7(11), 1435–1445.
14.
Zurück zum Zitat Fulton, J. P. Port, K., Shannon, D., Clay, D., Kitchen, N. (2018) Precision agriculture data management, Precision Agriculture Basics (precisionagbasics)169–188. Fulton, J. P. Port, K., Shannon, D., Clay, D., Kitchen, N. (2018) Precision agriculture data management, Precision Agriculture Basics (precisionagbasics)169–188.
15.
Zurück zum Zitat Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37. Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37.
16.
Zurück zum Zitat Suakanto, S., Engel, V. J., Hutagalung, M., Angela, D. Sensor networks data acquisition and task management for decision support of smart farming, in: 2016 International conference on information technology systems and innovation (ICITSI), IEEE, 2016, pp. 1–5. Suakanto, S., Engel, V. J., Hutagalung, M., Angela, D. Sensor networks data acquisition and task management for decision support of smart farming, in: 2016 International conference on information technology systems and innovation (ICITSI), IEEE, 2016, pp. 1–5.
17.
Zurück zum Zitat Khanna, A., & Kaur, S. (2019). Evolution of internet of things (iot) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture, 157, 218–231. Khanna, A., & Kaur, S. (2019). Evolution of internet of things (iot) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture, 157, 218–231.
18.
Zurück zum Zitat Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. (2019). Smart farming iot platform based on edge and cloud computing. Biosystems Engineering, 177, 4–17. Zamora-Izquierdo, M. A., Santa, J., Martínez, J. A., Martínez, V., & Skarmeta, A. F. (2019). Smart farming iot platform based on edge and cloud computing. Biosystems Engineering, 177, 4–17.
19.
Zurück zum Zitat Giacomin, J. C., Vasconcelos, F. H. (2006) Wireless sensor network as a measurement tool in precision agriculture, in: XVIII IMEKO WORLD CONGRESS-metrology for a sustainable development, pp. 17–22. Giacomin, J. C., Vasconcelos, F. H. (2006) Wireless sensor network as a measurement tool in precision agriculture, in: XVIII IMEKO WORLD CONGRESS-metrology for a sustainable development, pp. 17–22.
20.
Zurück zum Zitat Persson, D., Andersson, J. Real-time image processing on handheld devices and uav (2016). Persson, D., Andersson, J. Real-time image processing on handheld devices and uav (2016).
21.
Zurück zum Zitat Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782. Kussul, N., Lavreniuk, M., Skakun, S., & Shelestov, A. (2017). Deep learning classification of land cover and crop types using remote sensing data. IEEE Geoscience and Remote Sensing Letters, 14(5), 778–782.
22.
Zurück zum Zitat Trogo, R., Ebardaloza, J. B., Sabido, D. J., Bagtasa, G., Tongson, E., Balderama, O., & Sms-based smarter agriculture decision support system for yellow corn farmers in isabela, in,. (2015). IEEE Canada international humanitarian technology conference (IHTC2015). IEEE, 2015, 1–4. Trogo, R., Ebardaloza, J. B., Sabido, D. J., Bagtasa, G., Tongson, E., Balderama, O., & Sms-based smarter agriculture decision support system for yellow corn farmers in isabela, in,. (2015). IEEE Canada international humanitarian technology conference (IHTC2015). IEEE, 2015, 1–4.
23.
Zurück zum Zitat Tellaeche, A., Burgos Artizzu, X. P., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C. (2008) A new vision-based approach to differential spraying in precision agriculture, Computers and Electronics in Agriculture, 60(2): 144–155. Tellaeche, A., Burgos Artizzu, X. P., Pajares, G., Ribeiro, A., Fernández-Quintanilla, C. (2008) A new vision-based approach to differential spraying in precision agriculture, Computers and Electronics in Agriculture, 60(2): 144–155.
24.
Zurück zum Zitat G. Sylvester, E-agriculture in action: Drones for agriculture, Food and Agriculture Organization of the United Nations and International, 2018. G. Sylvester, E-agriculture in action: Drones for agriculture, Food and Agriculture Organization of the United Nations and International, 2018.
25.
Zurück zum Zitat Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on uav-based applications for precision agriculture. Information, 10(11), 349. Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. (2019). A review on uav-based applications for precision agriculture. Information, 10(11), 349.
26.
Zurück zum Zitat Sugiura, R. Noguchi, N., Ishii, K., Terao, H. (2002) The development of remote sensing system using unmanned helicopter, in: Automation technology for off-road equipment proceedings of the 2002 conference, American Society of Agricultural and Biological Engineers, 2002, p. 120. Sugiura, R. Noguchi, N., Ishii, K., Terao, H. (2002) The development of remote sensing system using unmanned helicopter, in: Automation technology for off-road equipment proceedings of the 2002 conference, American Society of Agricultural and Biological Engineers, 2002, p. 120.
27.
Zurück zum Zitat Fukagawa, T., Ishii, K., Noguchi, N., Terao, H. (2003) Detecting crop growth by a multi-spectral imaging sensor, in: 2003 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 1. Fukagawa, T., Ishii, K., Noguchi, N., Terao, H. (2003) Detecting crop growth by a multi-spectral imaging sensor, in: 2003 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, 1.
28.
Zurück zum Zitat Xiang, H., Tian, L., (2006) Development of autonomous unmanned helicopter based agricultural remote sensing system, in: 2006 ASAE annual meeting American society of agricultural and biological engineers, 2006, 1. Xiang, H., Tian, L., (2006) Development of autonomous unmanned helicopter based agricultural remote sensing system, in: 2006 ASAE annual meeting American society of agricultural and biological engineers, 2006, 1.
29.
Zurück zum Zitat Yang, C., Fernandez, C. J., Everitt, J. H., (2009) Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot, in: 2009 Reno, Nevada, June 21-June 24, 2009. American society of agricultural and biological engineers, 2009, 1. Yang, C., Fernandez, C. J., Everitt, J. H., (2009) Comparison of airborne multispectral and hyperspectral imagery for mapping cotton root rot, in: 2009 Reno, Nevada, June 21-June 24, 2009. American society of agricultural and biological engineers, 2009, 1.
30.
Zurück zum Zitat Hung, C., Bryson, M., & Sukkarieh, S. (2012). Multi-class predictive template for tree crown detection. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 170–183. Hung, C., Bryson, M., & Sukkarieh, S. (2012). Multi-class predictive template for tree crown detection. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 170–183.
31.
Zurück zum Zitat Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53(1), 21–27. Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE, 53(1), 21–27.
32.
Zurück zum Zitat Aldana-Jague, E., Heckrath, G., Macdonald, A., van Wesemael, B., & Van Oost, K. (2016). Uas-based soil carbon mapping using vis-nir (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 275, 55–66. Aldana-Jague, E., Heckrath, G., Macdonald, A., van Wesemael, B., & Van Oost, K. (2016). Uas-based soil carbon mapping using vis-nir (480–1000 nm) multi-spectral imaging: Potential and limitations. Geoderma, 275, 55–66.
33.
Zurück zum Zitat Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018). Uav low-altitude remote sensing for precision weed management. Weed Technology, 32(1), 2–6. Huang, Y., Reddy, K. N., Fletcher, R. S., & Pennington, D. (2018). Uav low-altitude remote sensing for precision weed management. Weed Technology, 32(1), 2–6.
34.
Zurück zum Zitat Di Martini, D. R., Tetila, E. C., Junior, J. M., Matsubara, E. T. Siqueira, H., de Castro Junior, A. A. Araujo, M. S. Monteiro, C. H., Pistori, H., Liesenberg, V. (2019) Machine learning applied to uav imagery in precision agriculture and forest monitoring in brazililian savanah, in: IGARSS 2019-2019 IEEE International geoscience and remote sensing symposium, IEEE, 2019, pp. 9364–9367. Di Martini, D. R., Tetila, E. C., Junior, J. M., Matsubara, E. T. Siqueira, H., de Castro Junior, A. A. Araujo, M. S. Monteiro, C. H., Pistori, H., Liesenberg, V. (2019) Machine learning applied to uav imagery in precision agriculture and forest monitoring in brazililian savanah, in: IGARSS 2019-2019 IEEE International geoscience and remote sensing symposium, IEEE, 2019, pp. 9364–9367.
35.
Zurück zum Zitat Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., Vargas, P. A. (2012) The use of unmanned aerial vehicles and wireless sensor network in agricultural applications, in: 2012IEEE international geoscience and remote sensing symposium. IEEE, 2012, 5045–5048. Costa, F. G., Ueyama, J., Braun, T., Pessin, G., Osório, F. S., Vargas, P. A. (2012) The use of unmanned aerial vehicles and wireless sensor network in agricultural applications, in: 2012IEEE international geoscience and remote sensing symposium. IEEE, 2012, 5045–5048.
36.
Zurück zum Zitat Arnold, T. De Biasio, M., Fritz, A., Leitner, R. (2013) Uav-based measurement of vegetation indices for environmental monitoring, in: 2013 Seventh international conference on sensing technology (ICST), IEEE, 2013, pp. 704–707. Arnold, T. De Biasio, M., Fritz, A., Leitner, R. (2013) Uav-based measurement of vegetation indices for environmental monitoring, in: 2013 Seventh international conference on sensing technology (ICST), IEEE, 2013, pp. 704–707.
37.
Zurück zum Zitat Ju, C., & Son, H. I. (2018). Multiple uav systems for agricultural applications: Control, implementation, and evaluation. Electronics, 7(9), 162. Ju, C., & Son, H. I. (2018). Multiple uav systems for agricultural applications: Control, implementation, and evaluation. Electronics, 7(9), 162.
38.
Zurück zum Zitat Skobelev, P., Budaev, D., Gusev, N., Voschuk, G. (2018) Designing multi-agent swarm of uav for precise agriculture, in: International conference on practical applications of agents and multi-agent systems, Springer, pp. 47–59. Skobelev, P., Budaev, D., Gusev, N., Voschuk, G. (2018) Designing multi-agent swarm of uav for precise agriculture, in: International conference on practical applications of agents and multi-agent systems, Springer, pp. 47–59.
39.
Zurück zum Zitat De Rango, F., Potrino, G., Tropea, M., Santamaria, A. F., & Fazio, P. (2019). Scalable and ligthway bio-inspired coordination protocol for fanet in precision agriculture applications. Computers & Electrical Engineering, 74, 305–318. De Rango, F., Potrino, G., Tropea, M., Santamaria, A. F., & Fazio, P. (2019). Scalable and ligthway bio-inspired coordination protocol for fanet in precision agriculture applications. Computers & Electrical Engineering, 74, 305–318.
40.
Zurück zum Zitat Pederi, Y., Cheporniuk, H. (2015) Unmanned aerial vehicles and new technological methods of monitoring and crop protection in precision agriculture, in: IEEE International conference actual problems of unmanned aerial vehicles developments (APUAVD). IEEE, 2015, 298–301. Pederi, Y., Cheporniuk, H. (2015) Unmanned aerial vehicles and new technological methods of monitoring and crop protection in precision agriculture, in: IEEE International conference actual problems of unmanned aerial vehicles developments (APUAVD). IEEE, 2015, 298–301.
41.
Zurück zum Zitat Devraj, R., Deep, V. (2015) Expert systems for management of insect-pests in pulse crop, in: 2nd Int. conference on computing for sustainable global development (INDIACom), 2015, pp. 1144–1150. Devraj, R., Deep, V. (2015) Expert systems for management of insect-pests in pulse crop, in: 2nd Int. conference on computing for sustainable global development (INDIACom), 2015, pp. 1144–1150.
42.
Zurück zum Zitat Mogili, U. R., & Deepak, B. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502–509. Mogili, U. R., & Deepak, B. (2018). Review on application of drone systems in precision agriculture. Procedia Computer Science, 133, 502–509.
43.
Zurück zum Zitat Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634. Shakhatreh, H., Sawalmeh, A. H., Al-Fuqaha, A., Dou, Z., Almaita, E., Khalil, I., Othman, N. S., Khreishah, A., & Guizani, M. (2019). Unmanned aerial vehicles (uavs): A survey on civil applications and key research challenges. IEEE Access, 7, 48572–48634.
44.
Zurück zum Zitat Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., et al. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in plant science, 8, 1111. Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., Xu, B., Yang, X., Zhu, D., Zhang, X., et al. (2017). Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Frontiers in plant science, 8, 1111.
45.
Zurück zum Zitat Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Gültekin, S. S. (2022). A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 1047. Aslan, M. F., Durdu, A., Sabanci, K., Ropelewska, E., & Gültekin, S. S. (2022). A comprehensive survey of the recent studies with uav for precision agriculture in open fields and greenhouses. Applied Sciences, 12(3), 1047.
46.
Zurück zum Zitat Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J.-G. (2021). Unmanned aerial vehicles (uav) in precision agriculture: Applications and challenges. Energies, 15(1), 217. Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M., & Choi, J.-G. (2021). Unmanned aerial vehicles (uav) in precision agriculture: Applications and challenges. Energies, 15(1), 217.
47.
Zurück zum Zitat Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on uav characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204. Delavarpour, N., Koparan, C., Nowatzki, J., Bajwa, S., & Sun, X. (2021). A technical study on uav characteristics for precision agriculture applications and associated practical challenges. Remote Sensing, 13(6), 1204.
48.
Zurück zum Zitat Liaghat, S., Balasundram, S. K., et al. (2010). A review: The role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50–55. Liaghat, S., Balasundram, S. K., et al. (2010). A review: The role of remote sensing in precision agriculture. American Journal of Agricultural and Biological Sciences, 5(1), 50–55.
49.
Zurück zum Zitat Tokekar, P., Vander Hook, J., Mulla, D., & Isler, V. (2016). Sensor planning for a symbiotic uav and ugv system for precision agriculture. IEEE Transactions on Robotics, 32(6), 1498–1511. Tokekar, P., Vander Hook, J., Mulla, D., & Isler, V. (2016). Sensor planning for a symbiotic uav and ugv system for precision agriculture. IEEE Transactions on Robotics, 32(6), 1498–1511.
50.
Zurück zum Zitat Comparetti, A. (2011) Precision agriculture: Past, present and future, in: International scientific conference AGRICULTURAL ENGINEERING AND ENVIRONMENT-2011, Aleksandras Stulginskis University, 2011, pp. 216–230. Comparetti, A. (2011) Precision agriculture: Past, present and future, in: International scientific conference AGRICULTURAL ENGINEERING AND ENVIRONMENT-2011, Aleksandras Stulginskis University, 2011, pp. 216–230.
51.
Zurück zum Zitat Tuyishimire, E., Bagula, A., Rekhis, S., Boudriga, N. (2017) Cooperative data muling from ground sensors to base stations using uavs, in: 2017 IEEE symposium on computers and communications (ISCC). IEEE, 2017, 35–41. Tuyishimire, E., Bagula, A., Rekhis, S., Boudriga, N. (2017) Cooperative data muling from ground sensors to base stations using uavs, in: 2017 IEEE symposium on computers and communications (ISCC). IEEE, 2017, 35–41.
52.
Zurück zum Zitat Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked uavs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56–63. Quaritsch, M., Kruggl, K., Wischounig-Strucl, D., Bhattacharya, S., Shah, M., & Rinner, B. (2010). Networked uavs as aerial sensor network for disaster management applications. e & i Elektrotechnik und Informationstechnik, 127(3), 56–63.
54.
Zurück zum Zitat Edokossi, K., Calabia, A., Jin, S., & Molina, I. (2020). Gnss-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sensing, 12(4), 614. Edokossi, K., Calabia, A., Jin, S., & Molina, I. (2020). Gnss-reflectometry and remote sensing of soil moisture: A review of measurement techniques, methods, and applications. Remote Sensing, 12(4), 614.
55.
Zurück zum Zitat Zhang, J., He, L., Karkee, M., Zhang, Q., Zhang, X., & Gao, Z. (2018). Branch detection for apple trees trained in fruiting wall architecture using depth features and regions-convolutional neural network (r-cnn). Computers and Electronics in Agriculture, 155, 386–393. Zhang, J., He, L., Karkee, M., Zhang, Q., Zhang, X., & Gao, Z. (2018). Branch detection for apple trees trained in fruiting wall architecture using depth features and regions-convolutional neural network (r-cnn). Computers and Electronics in Agriculture, 155, 386–393.
56.
Zurück zum Zitat Yasin, J. N., Mohamed, S. A., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H., & Plosila, J. (2020). Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE access, 8, 105139–105155. Yasin, J. N., Mohamed, S. A., Haghbayan, M.-H., Heikkonen, J., Tenhunen, H., & Plosila, J. (2020). Unmanned aerial vehicles (uavs): Collision avoidance systems and approaches. IEEE access, 8, 105139–105155.
57.
Zurück zum Zitat Reddy, T., RM, S. P., Parimala, M., Chowdhary, C. L., Hakak, S., & Khan, W. Z. (2020). A deep neural networks based model for uninterrupted marine environment monitoring. Computer Communications, 157, 64–75. Reddy, T., RM, S. P., Parimala, M., Chowdhary, C. L., Hakak, S., & Khan, W. Z. (2020). A deep neural networks based model for uninterrupted marine environment monitoring. Computer Communications, 157, 64–75.
58.
Zurück zum Zitat Matolak, D. W., Sun, R. (2014) Initial results for air-ground channel measurements & modeling for unmanned aircraft systems: Over-sea, in: (2014) IEEE aerospace conference. IEEE, 2014, 1–15. Matolak, D. W., Sun, R. (2014) Initial results for air-ground channel measurements & modeling for unmanned aircraft systems: Over-sea, in: (2014) IEEE aerospace conference. IEEE, 2014, 1–15.
59.
Zurück zum Zitat Sun, R., & Matolak, D. W. (2016). Air-ground channel characterization for unmanned aircraft systems part ii: Hilly and mountainous settings. IEEE Transactions on Vehicular Technology, 66(3), 1913–1925. Sun, R., & Matolak, D. W. (2016). Air-ground channel characterization for unmanned aircraft systems part ii: Hilly and mountainous settings. IEEE Transactions on Vehicular Technology, 66(3), 1913–1925.
60.
Zurück zum Zitat Matolak, D. W., & Sun, R. (2017). Air-ground channel characterization for unmanned aircraft systems-part iii: The suburban and near-urban environments. IEEE Transactions on Vehicular Technology, 66(8), 6607–6618. Matolak, D. W., & Sun, R. (2017). Air-ground channel characterization for unmanned aircraft systems-part iii: The suburban and near-urban environments. IEEE Transactions on Vehicular Technology, 66(8), 6607–6618.
62.
Zurück zum Zitat Malik, A. W., Rahman, A. U., Qayyum, T., & Ravana, S. D. (2020). Leveraging fog computing for sustainable smart farming using distributed simulation. IEEE Internet of Things Journal, 7(4), 3300–3309. Malik, A. W., Rahman, A. U., Qayyum, T., & Ravana, S. D. (2020). Leveraging fog computing for sustainable smart farming using distributed simulation. IEEE Internet of Things Journal, 7(4), 3300–3309.
63.
Zurück zum Zitat Lee, S.-W., & Mase, K. (2002). Activity and location recognition using wearable sensors. IEEE Pervasive Computing, 1(3), 24–32. Lee, S.-W., & Mase, K. (2002). Activity and location recognition using wearable sensors. IEEE Pervasive Computing, 1(3), 24–32.
64.
Zurück zum Zitat Bayrakdar, M. E. (2020). Employing sensor network based opportunistic spectrum utilization for agricultural monitoring. Sustainable Computing: Informatics and Systems, 27, 100404. Bayrakdar, M. E. (2020). Employing sensor network based opportunistic spectrum utilization for agricultural monitoring. Sustainable Computing: Informatics and Systems, 27, 100404.
65.
Zurück zum Zitat Salam, A. (2020) Internet of things in agricultural innovation and security, in: Internet of things for sustainable community development, Springer, pp. 71–112. Salam, A. (2020) Internet of things in agricultural innovation and security, in: Internet of things for sustainable community development, Springer, pp. 71–112.
66.
Zurück zum Zitat Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., & Berkvens, R. (2020). Leveraging lorawan technology for precision agriculture in greenhouses. Sensors, 20(7), 1827. Singh, R. K., Aernouts, M., De Meyer, M., Weyn, M., & Berkvens, R. (2020). Leveraging lorawan technology for precision agriculture in greenhouses. Sensors, 20(7), 1827.
67.
Zurück zum Zitat Alvar-Beltrán, J., Fabbri, C., Verdi, L., Truschi, S., Dalla Marta, A., & Orlandini, S. (2020). Testing proximal optical sensors on quinoa growth and development. Remote Sensing, 12(12), 1958. Alvar-Beltrán, J., Fabbri, C., Verdi, L., Truschi, S., Dalla Marta, A., & Orlandini, S. (2020). Testing proximal optical sensors on quinoa growth and development. Remote Sensing, 12(12), 1958.
68.
Zurück zum Zitat von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. (2015). Deploying four optical uav-based sensors over grassland: Challenges and limitations. Biogeosciences, 12(1), 163–175. von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. (2015). Deploying four optical uav-based sensors over grassland: Challenges and limitations. Biogeosciences, 12(1), 163–175.
69.
Zurück zum Zitat Singh, N., & Singh, A. N. (2020). Odysseys of agriculture sensors: Current challenges and forthcoming prospects. Computers and Electronics in Agriculture, 171, 105328. Singh, N., & Singh, A. N. (2020). Odysseys of agriculture sensors: Current challenges and forthcoming prospects. Computers and Electronics in Agriculture, 171, 105328.
70.
Zurück zum Zitat Nhamo, L., Ebrahim, G. Y., Mabhaudhi, T., Mpandeli, S., Magombeyi, M., Chitakira, M., Magidi, J., & Sibanda, M. (2020). An assessment of groundwater use in irrigated agriculture using multi-spectral remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102810. Nhamo, L., Ebrahim, G. Y., Mabhaudhi, T., Mpandeli, S., Magombeyi, M., Chitakira, M., Magidi, J., & Sibanda, M. (2020). An assessment of groundwater use in irrigated agriculture using multi-spectral remote sensing. Physics and Chemistry of the Earth, Parts A/B/C, 115, 102810.
71.
Zurück zum Zitat Allred, B., Martinez, L., Fessehazion, M. K., Rouse, G., Williamson, T. N., Wishart, D., Koganti, T., Freeland, R., Eash, N., Batschelet, A., et al. (2020). Overall results and key findings on the use of uav visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes. Agricultural Water Management, 232, 106036. Allred, B., Martinez, L., Fessehazion, M. K., Rouse, G., Williamson, T. N., Wishart, D., Koganti, T., Freeland, R., Eash, N., Batschelet, A., et al. (2020). Overall results and key findings on the use of uav visible-color, multispectral, and thermal infrared imagery to map agricultural drainage pipes. Agricultural Water Management, 232, 106036.
72.
Zurück zum Zitat Gadekallu, T. R., Rajput, D. S., Reddy, M. P. K., Lakshmanna, K. S. Bhattacharya, Singh, S., Jolfaei, A., Alazab, M. (2020) A novel pca–whale optimization-based deep neural network model for classification of tomato plant diseases using gpu, Journal of Real-Time Image Processing, 1–14. Gadekallu, T. R., Rajput, D. S., Reddy, M. P. K., Lakshmanna, K. S. Bhattacharya, Singh, S., Jolfaei, A., Alazab, M. (2020) A novel pca–whale optimization-based deep neural network model for classification of tomato plant diseases using gpu, Journal of Real-Time Image Processing, 1–14.
73.
Zurück zum Zitat Cerro, J., Cruz Ulloa, C., & de León Rivas, J. (2021). Unmanned aerial vehicles in agriculture: A survey. Agronomy, 11(2), 203. Cerro, J., Cruz Ulloa, C., & de León Rivas, J. (2021). Unmanned aerial vehicles in agriculture: A survey. Agronomy, 11(2), 203.
74.
Zurück zum Zitat Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G. Alexis, K., Siegwart, R. (2016), Long-endurance sensing and mapping using a hand-launchable solar-powered uav, in: Field and Service Robotics, Springer, pp. 441–454. Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G. Alexis, K., Siegwart, R. (2016), Long-endurance sensing and mapping using a hand-launchable solar-powered uav, in: Field and Service Robotics, Springer, pp. 441–454.
75.
Zurück zum Zitat Czyba, R., Lemanowicz, M., Gorol, Z., Kudala, T., Construction prototyping, flight dynamics modeling, and aerodynamic analysis of hybrid vtol unmanned aircraft, Journal of Advanced Transportation 2018 (2018). Czyba, R., Lemanowicz, M., Gorol, Z., Kudala, T., Construction prototyping, flight dynamics modeling, and aerodynamic analysis of hybrid vtol unmanned aircraft, Journal of Advanced Transportation 2018 (2018).
76.
Zurück zum Zitat Srivastava, A., & Prakash, J. (2021). Future fanet with application and enabling techniques: Anatomization and sustainability issues. Computer Science Review, 39, 100359.MathSciNet Srivastava, A., & Prakash, J. (2021). Future fanet with application and enabling techniques: Anatomization and sustainability issues. Computer Science Review, 39, 100359.MathSciNet
77.
Zurück zum Zitat Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399–413. Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399–413.
78.
Zurück zum Zitat Bouachir, O., Abrassart, A., Garcia, F. et al (2014). A mobility model for uav ad hoc network [c] international conference on unmanned aircraft systems. Bouachir, O., Abrassart, A., Garcia, F. et al (2014). A mobility model for uav ad hoc network [c] international conference on unmanned aircraft systems.
79.
Zurück zum Zitat Bouachir, O., Abrassart, A., Garcia, F., Larrieu, N. (2014) A mobility model for uav ad hoc network, in: 2014 International conference on unmanned aircraft systems (ICUAS). IEEE, 2014, 383–388. Bouachir, O., Abrassart, A., Garcia, F., Larrieu, N. (2014) A mobility model for uav ad hoc network, in: 2014 International conference on unmanned aircraft systems (ICUAS). IEEE, 2014, 383–388.
80.
Zurück zum Zitat López, A., Jurado, J. M., Ogayar, C. J., & Feito, F. R. (2021). A framework for registering uav-based imagery for crop-tracking in precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 97, 102274. López, A., Jurado, J. M., Ogayar, C. J., & Feito, F. R. (2021). A framework for registering uav-based imagery for crop-tracking in precision agriculture. International Journal of Applied Earth Observation and Geoinformation, 97, 102274.
81.
Zurück zum Zitat Basiri, A., Mariani, V., Silano, G., Aatif, M., Iannelli, L., & Glielmo, L. (2022). A survey on the application of path-planning algorithms for multi-rotor uavs in precision agriculture. The Journal of Navigation, 75(2), 364–383. Basiri, A., Mariani, V., Silano, G., Aatif, M., Iannelli, L., & Glielmo, L. (2022). A survey on the application of path-planning algorithms for multi-rotor uavs in precision agriculture. The Journal of Navigation, 75(2), 364–383.
82.
Zurück zum Zitat Singh, P. K., & Sharma, A. (2022). An intelligent wsn-uav-based iot framework for precision agriculture application. Computers and Electrical Engineering, 100, 107912. Singh, P. K., & Sharma, A. (2022). An intelligent wsn-uav-based iot framework for precision agriculture application. Computers and Electrical Engineering, 100, 107912.
83.
Zurück zum Zitat Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (uav) images. PloS One, 8(10), e77151. Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (uav) images. PloS One, 8(10), e77151.
84.
Zurück zum Zitat Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013). Configuration and specifications of an unmanned aerial vehicle (uav) for early site specific weed management. PloS one, 8(3), e58210. Torres-Sánchez, J., López-Granados, F., De Castro, A. I., & Peña-Barragán, J. M. (2013). Configuration and specifications of an unmanned aerial vehicle (uav) for early site specific weed management. PloS one, 8(3), e58210.
85.
Zurück zum Zitat Lv, M., Xiao, S., Yu, T., & He, Y. (2019). Influence of uav flight speed on droplet deposition characteristics with the application of infrared thermal imaging. International Journal of Agricultural and Biological Engineering, 12(3), 10–17. Lv, M., Xiao, S., Yu, T., & He, Y. (2019). Influence of uav flight speed on droplet deposition characteristics with the application of infrared thermal imaging. International Journal of Agricultural and Biological Engineering, 12(3), 10–17.
86.
Zurück zum Zitat Yallappa, D., Veerangouda, M., Maski, D., Palled, V., Bheemanna, M., (2017) Development and evaluation of drone mounted sprayer for pesticide applications to crops, in: IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2017, 1–7. Yallappa, D., Veerangouda, M., Maski, D., Palled, V., Bheemanna, M., (2017) Development and evaluation of drone mounted sprayer for pesticide applications to crops, in: IEEE Global Humanitarian Technology Conference (GHTC). IEEE, 2017, 1–7.
87.
Zurück zum Zitat Hentschke, M., Pignaton de Freitas, E., Hennig, C. H., & Girardi da Veiga, I. C. (2018). Evaluation of altitude sensors for a crop spraying drone. Drones, 2(3), 25. Hentschke, M., Pignaton de Freitas, E., Hennig, C. H., & Girardi da Veiga, I. C. (2018). Evaluation of altitude sensors for a crop spraying drone. Drones, 2(3), 25.
88.
Zurück zum Zitat Xiongkui, H., Bonds, J., Herbst, A., & Langenakens, J. (2017). Recent development of unmanned aerial vehicle for plant protection in east asia. International Journal of Agricultural and Biological Engineering, 10(3), 18–30. Xiongkui, H., Bonds, J., Herbst, A., & Langenakens, J. (2017). Recent development of unmanned aerial vehicle for plant protection in east asia. International Journal of Agricultural and Biological Engineering, 10(3), 18–30.
89.
Zurück zum Zitat Guo, T., Kujirai, T., & Watanabe, T. (2012). Mapping crop status from an unmanned aerial vehicle for precision agriculture applications, ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial. Information Sciences, 39, 485–490. Guo, T., Kujirai, T., & Watanabe, T. (2012). Mapping crop status from an unmanned aerial vehicle for precision agriculture applications, ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial. Information Sciences, 39, 485–490.
90.
Zurück zum Zitat Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav). Irrigation Science, 30(6), 511–522. Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., & Tardaguila, J. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (uav). Irrigation Science, 30(6), 511–522.
91.
Zurück zum Zitat Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22–32. Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22–32.
92.
Zurück zum Zitat Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P. A., Alarcón, J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14(6), 660–678. Gonzalez-Dugo, V., Zarco-Tejada, P., Nicolás, E., Nortes, P. A., Alarcón, J., Intrigliolo, D. S., & Fereres, E. (2013). Using high resolution uav thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precision Agriculture, 14(6), 660–678.
93.
Zurück zum Zitat Yue, J., Lei, T., Li, C., & Zhu, J. (2012). The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intelligent Automation & Soft Computing, 18(8), 1043–1052. Yue, J., Lei, T., Li, C., & Zhu, J. (2012). The application of unmanned aerial vehicle remote sensing in quickly monitoring crop pests. Intelligent Automation & Soft Computing, 18(8), 1043–1052.
94.
Zurück zum Zitat Chamoso, P., Raveane, W., Parra, V., González, A. (2014) Uavs applied to the counting and monitoring of animals, in: Ambient intelligence-software and applications, Springer, 2014, pp. 71–80. Chamoso, P., Raveane, W., Parra, V., González, A. (2014) Uavs applied to the counting and monitoring of animals, in: Ambient intelligence-software and applications, Springer, 2014, pp. 71–80.
95.
Zurück zum Zitat Chamoso, P., González-Briones, A., Rivas, A., Bueno De Mata, F., & Corchado, J. M. (2018). The use of drones in spain: Towards a platform for controlling uavs in urban environments. Sensors, 18(5), 1416. Chamoso, P., González-Briones, A., Rivas, A., Bueno De Mata, F., & Corchado, J. M. (2018). The use of drones in spain: Towards a platform for controlling uavs in urban environments. Sensors, 18(5), 1416.
96.
Zurück zum Zitat Havens, K. J., Sharp, E. J. (2015) Thermal imaging techniques to survey and monitor animals in the wild: a methodology, Academic Press, 2015. Havens, K. J., Sharp, E. J. (2015) Thermal imaging techniques to survey and monitor animals in the wild: a methodology, Academic Press, 2015.
97.
Zurück zum Zitat Vayssade, J.-A., Arquet, R., & Bonneau, M. (2019). Automatic activity tracking of goats using drone camera. Computers and Electronics in Agriculture, 162, 767–772. Vayssade, J.-A., Arquet, R., & Bonneau, M. (2019). Automatic activity tracking of goats using drone camera. Computers and Electronics in Agriculture, 162, 767–772.
98.
Zurück zum Zitat Yinka-Banjo, C., Ajayi, O. (2019) Sky-farmers: applications of unmanned aerial vehicles (uav) in agriculture, in: Autonomous Vehicles, IntechOpen, 2019, pp. 767–772. Yinka-Banjo, C., Ajayi, O. (2019) Sky-farmers: applications of unmanned aerial vehicles (uav) in agriculture, in: Autonomous Vehicles, IntechOpen, 2019, pp. 767–772.
99.
Zurück zum Zitat Webb, P., Mehlhorn, S. A., Smartt, P. (2017) Developing protocols for using a uav to monitor herd health, in: 2017 ASABE annual international meeting American society of agricultural and biological engineers, 1. Webb, P., Mehlhorn, S. A., Smartt, P. (2017) Developing protocols for using a uav to monitor herd health, in: 2017 ASABE annual international meeting American society of agricultural and biological engineers, 1.
100.
Zurück zum Zitat Ma, Y. Selby, N., Adib, F. Drone relays for battery-free networks, in: Proceedings of the conference of the ACM special interest group on data communication, 2017, pp. 335–347. Ma, Y. Selby, N., Adib, F. Drone relays for battery-free networks, in: Proceedings of the conference of the ACM special interest group on data communication, 2017, pp. 335–347.
101.
Zurück zum Zitat Nyamuryekung’e, S., Cibils, A. F., Estell, R. E., & Gonzalez, A. L. (2016). Use of an unmanned aerial vehicle- mounted video camera to assess feeding behavior of raramuri criollo cows. Rangeland ecology & management, 69(5), 386–389. Nyamuryekung’e, S., Cibils, A. F., Estell, R. E., & Gonzalez, A. L. (2016). Use of an unmanned aerial vehicle- mounted video camera to assess feeding behavior of raramuri criollo cows. Rangeland ecology & management, 69(5), 386–389.
103.
Zurück zum Zitat Hovhannisyan, T., Efendyan, P., & Vardanyan, M. (2018). Creation of a digital model of fields with application of dji phantom 3 drone and the opportunities of its utilization in agriculture. Annals of Agrarian Science, 16(2), 177–180. Hovhannisyan, T., Efendyan, P., & Vardanyan, M. (2018). Creation of a digital model of fields with application of dji phantom 3 drone and the opportunities of its utilization in agriculture. Annals of Agrarian Science, 16(2), 177–180.
105.
Zurück zum Zitat Prakash, S., Kumar, M., Jat, D., Jyoti, B., Subeesh, A., Agrawal, K., Tiwari, P., Mehta, C., Singh, P., Singh, K. K. (2022) Applications of drones in agriculture: Status and scope, Research Gate (2022). Prakash, S., Kumar, M., Jat, D., Jyoti, B., Subeesh, A., Agrawal, K., Tiwari, P., Mehta, C., Singh, P., Singh, K. K. (2022) Applications of drones in agriculture: Status and scope, Research Gate (2022).
Metadaten
Titel
Techniques, Answers, and Real-World UAV Implementations for Precision Farming
verfasst von
Ashish Srivastava
Jay Prakash
Publikationsdatum
13.07.2023
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2023
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-023-10577-z

Weitere Artikel der Ausgabe 4/2023

Wireless Personal Communications 4/2023 Zur Ausgabe

Neuer Inhalt