Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2021

28.02.2020 | Original Article

Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process

verfasst von: Lorenzo Menin, Stergios Vakalis, Vittoria Benedetti, Francesco Patuzzi, Marco Baratieri

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biological methanation (biomethanation) of biomass-derived syngas can be a promising alternative to catalytic methanation, due to its milder operating conditions, and could improve the feasibility of power-to-gas and syngas upgrading systems. However, the feasibility of integrating syngas biomethanation with other processes, i.e., electrolysis and gasification, has not been thoroughly assessed so far by the existing literature. In this study, we carried out the techno-economic analysis of such integrated system and we compared it with the production of pure hydrogen. The results indicate that the two processes could produce 0.39 Nm3 of bio-derived substitute natural gas (bSNG) or 0.07 kg of bio-hydrogen (bH2) per kg of dry biomass, respectively. The process cold gas efficiency associated with the produced bSNG is estimated at 50.6%, with a 97.4% input hydrogen utilization efficiency. For bH2, the cold gas efficiency is 36.6%, with 85% hydrogen utilization. Gasification and gas compression were identified as the unit operations with the highest energy demand in both processes. The minimum selling prices (MSP) of the two products were estimated at 2.68 €/Nm3 for bSNG and 15.35 €/kg for bH2. While delivery costs and a limited production capacity pose additional challenges to the development of bH2 production on decentralized gasification plants, bSNG production for grid injection could become a more feasible alternative under appropriate incentive schemes. Key optimization opportunities for such process rely on better heat integration, lower pressure operation, and the use of waste biomass as feedstock.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gallucci K (2012) Biomass and waste gasification. In: Fuel cells in the waste-to-energy chain: distributed generation through non-conventional fuels and fuel cells. Springer London, London, pp 65–79CrossRef Gallucci K (2012) Biomass and waste gasification. In: Fuel cells in the waste-to-energy chain: distributed generation through non-conventional fuels and fuel cells. Springer London, London, pp 65–79CrossRef
3.
Zurück zum Zitat Ptasinski KJ (2015) Bioenergy Systems. Effic. Biomass Energy Ptasinski KJ (2015) Bioenergy Systems. Effic. Biomass Energy
5.
7.
Zurück zum Zitat Lehner M, Tichler R, Steinmüller H, Koppe M (2014) The power-to-gas concept. In: Power-to-gas: technology and business models. Springer International Publishing, Cham, pp 7–17 Lehner M, Tichler R, Steinmüller H, Koppe M (2014) The power-to-gas concept. In: Power-to-gas: technology and business models. Springer International Publishing, Cham, pp 7–17
8.
Zurück zum Zitat Lehner M, Tichler R, Steinmüller H, Koppe M (2014) Methanation. In: Power-to-gas: technology and business models. Springer International Publishing, Cham, pp 41–61 Lehner M, Tichler R, Steinmüller H, Koppe M (2014) Methanation. In: Power-to-gas: technology and business models. Springer International Publishing, Cham, pp 41–61
14.
Zurück zum Zitat Zwart RW, Boerrigter H, Deurwaarder E et al (2006) Production of synthetic natural gas ( SNG ) from biomass development and operation of an integrated Zwart RW, Boerrigter H, Deurwaarder E et al (2006) Production of synthetic natural gas ( SNG ) from biomass development and operation of an integrated
19.
Zurück zum Zitat Held J (2016) SNG from wood - the gobigas project. In: Synthetic natural gas from coal and dry biomass, and power-to-gas applications. Wiley, pp 181–190 Held J (2016) SNG from wood - the gobigas project. In: Synthetic natural gas from coal and dry biomass, and power-to-gas applications. Wiley, pp 181–190
24.
Zurück zum Zitat Ptasinski KJ (2016) Thermochemical conversion. In: Efficiency of biomass energy. Wiley, pp 153–202 Ptasinski KJ (2016) Thermochemical conversion. In: Efficiency of biomass energy. Wiley, pp 153–202
27.
Zurück zum Zitat Hofbauer H, Rauch R (2008) Stoichiometric water consumption of steam gasification by the FICFB-gasification process. In: Progress in thermochemical biomass conversion. Wiley, pp 199–208 Hofbauer H, Rauch R (2008) Stoichiometric water consumption of steam gasification by the FICFB-gasification process. In: Progress in thermochemical biomass conversion. Wiley, pp 199–208
31.
Zurück zum Zitat Platon A, Wang Y (2009) Water-Gas Shift Technologies. In: Hydrogen and syngas production and purification technologies. Wiley, pp 311–328 Platon A, Wang Y (2009) Water-Gas Shift Technologies. In: Hydrogen and syngas production and purification technologies. Wiley, pp 311–328
39.
Zurück zum Zitat Guillet N, Millet P (2015) Alkaline water electrolysis. In: Hydrogen production. Wiley, pp 117–166 Guillet N, Millet P (2015) Alkaline water electrolysis. In: Hydrogen production. Wiley, pp 117–166
43.
Zurück zum Zitat Incropera FP, Dewitt DP, Bergman TL, Incropera FP, Frank P (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken Incropera FP, Dewitt DP, Bergman TL, Incropera FP, Frank P (2007) Fundamentals of heat and mass transfer, 6th edn. Wiley, Hoboken
45.
Zurück zum Zitat Fraile D, Lanoix J-C, Maio P, et al (2015) Overview of the market segmentation for hydrogen across potential customer groups, based on key application areas Fraile D, Lanoix J-C, Maio P, et al (2015) Overview of the market segmentation for hydrogen across potential customer groups, based on key application areas
50.
Zurück zum Zitat IEA (2019) The future of hydrogen. Paris IEA (2019) The future of hydrogen. Paris
Metadaten
Titel
Techno-economic assessment of an integrated biomass gasification, electrolysis, and syngas biomethanation process
verfasst von
Lorenzo Menin
Stergios Vakalis
Vittoria Benedetti
Francesco Patuzzi
Marco Baratieri
Publikationsdatum
28.02.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2021
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-020-00654-9

Weitere Artikel der Ausgabe 2/2021

Biomass Conversion and Biorefinery 2/2021 Zur Ausgabe