Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 7/2021

20.04.2021

Technology Development for Producing Inconel 625 in Aerospace Application Using Wire Arc Additive Manufacturing Process

verfasst von: Anivesh Chintala, M. Tejaswi Kumar, M. Sathishkumar, N. Arivazhagan, M. Manikandan

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 7/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As the manufacturing sectors are leaning toward additive manufacturing, leaving the traditional methods behind. Wire arc additive manufacturing (WAAM) technique is the growing technique to fabricate the aerospace, defense, and automotive sector components. The major problem associated with the WAAM technique is establishing the process parameters to acquire the defect-free components. In this research work, an attempt has been carried out to establish a wire arc additively manufactured component using Inconel 625 filler. A successful attempt has been made to build the thick slab wall component using Inconel 625. The microstructure analysis was studied in both longitudinal and transverse direction to check the homogeneity. The transverse microstructure at the near substrate region has a cellular structure. The columnar structure is observed in the layer bands between the layers, and the topmost layer revealed equiaxed with a dendritic structure. The longitudinal microstructure varies from a columnar structure in the inter-pass boundaries to fine equiaxed structures between the passes, and at the end, it is an equiaxed structure. Microsegregation in the dendritic core and interdendritic regions was evaluated along with microhardness measurement. The microhardness values along the different layers were increased when taken from bottom to top. Similarly, it increases across the passes due to the formation of an equiaxed dendritic structure. The EBSD investigation was performed to evaluate the manufactured component’s grain size (25.48 ± 61.02 μm), and misorientation angle, low boundary rotation angle (2–5°) and high boundary rotation angle (15–180°). Further, the local dislocation sites were observed through KAM mapping.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Ford and M. Despeisse, Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges, J. Clean. Prod., 2016, 137, p 1573–1587.CrossRef S. Ford and M. Despeisse, Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges, J. Clean. Prod., 2016, 137, p 1573–1587.CrossRef
2.
Zurück zum Zitat M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja and F. Martina, Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints, CIRP Ann., 2016, 65(2), p 737–760.CrossRef M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson, A. Bernard, J. Schulz, P. Graf, B. Ahuja and F. Martina, Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints, CIRP Ann., 2016, 65(2), p 737–760.CrossRef
3.
Zurück zum Zitat N. Labonnote, A. Ronnquist, B. Manum and P. Ruther, Additive Construction: State-of-the-Art, Challenges and Opportunities, Autom. Constr., 2016, 72(December), p 347–366.CrossRef N. Labonnote, A. Ronnquist, B. Manum and P. Ruther, Additive Construction: State-of-the-Art, Challenges and Opportunities, Autom. Constr., 2016, 72(December), p 347–366.CrossRef
4.
Zurück zum Zitat D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.CrossRef D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, Additive Manufacturing of Metals, Acta Mater., 2016, 117, p 371–392.CrossRef
5.
Zurück zum Zitat F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metall. Mater. Trans. A, 2013, 44(February), p 968–977.CrossRef F. Wang, S. Williams, P. Colegrove and A.A. Antonysamy, Microstructure and Mechanical Properties of Wire and Arc Additive Manufactured Ti-6Al-4V, Metall. Mater. Trans. A, 2013, 44(February), p 968–977.CrossRef
7.
Zurück zum Zitat A. Pandey, A. Awasthi and K.K. Saxena, Metallic Implants with Properties and Latest Production Techniques: A Review, Adv. Mater. Process. Technol., 2020, 6(2), p 167–202. A. Pandey, A. Awasthi and K.K. Saxena, Metallic Implants with Properties and Latest Production Techniques: A Review, Adv. Mater. Process. Technol., 2020, 6(2), p 167–202.
8.
Zurück zum Zitat F. Martina, J. Mehnen, S.W. Williams, P. Colegrove and F. Wang, Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti–6Al–4V, J. Mater. Process. Technol., 2012, 212, p 1377–1386.CrossRef F. Martina, J. Mehnen, S.W. Williams, P. Colegrove and F. Wang, Investigation of the Benefits of Plasma Deposition for the Additive Layer Manufacture of Ti–6Al–4V, J. Mater. Process. Technol., 2012, 212, p 1377–1386.CrossRef
9.
Zurück zum Zitat S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove, Wire + Arc Additive Manufacturing Wire þ Arc Additive Manufacturing, Mater. Sci. Technol., 2016, 32(7), p 641–647.CrossRef S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal and P. Colegrove, Wire + Arc Additive Manufacturing Wire þ Arc Additive Manufacturing, Mater. Sci. Technol., 2016, 32(7), p 641–647.CrossRef
11.
Zurück zum Zitat R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen and C. Liu, Hot-Wire Arc Additive Manufacturing of Aluminum Alloy with Reduced Porosity and High Deposition Rate, Mater. Des., 2021, 199, p 109370.CrossRef R. Fu, S. Tang, J. Lu, Y. Cui, Z. Li, H. Zhang, T. Xu, Z. Chen and C. Liu, Hot-Wire Arc Additive Manufacturing of Aluminum Alloy with Reduced Porosity and High Deposition Rate, Mater. Des., 2021, 199, p 109370.CrossRef
12.
Zurück zum Zitat N.A. Rosli, M.R. Alkahari, M.F. Abdollah, S. Maidin, F.R. Ramli and S.G. Herawan, Review on Effect of Heat Input for Wire Arc Additive Manufacturing Process, J. Mater. Res. Technol., 2021, 11, p 2127–2145.CrossRef N.A. Rosli, M.R. Alkahari, M.F. Abdollah, S. Maidin, F.R. Ramli and S.G. Herawan, Review on Effect of Heat Input for Wire Arc Additive Manufacturing Process, J. Mater. Res. Technol., 2021, 11, p 2127–2145.CrossRef
14.
Zurück zum Zitat B. Dubiel and J. Sieniawski, Precipitates in Additively Manufactured Inconel 625 Superalloy, Materials (Basel), 2019, 12, p 1–11.CrossRef B. Dubiel and J. Sieniawski, Precipitates in Additively Manufactured Inconel 625 Superalloy, Materials (Basel), 2019, 12, p 1–11.CrossRef
16.
Zurück zum Zitat J. Huebner, D. Kata, J. Kusiński and P. Rutkowski, Microstructure of Laser Cladded Carbide Reinforced Inconel 625 Alloy for Turbine Blade Application, Ceram. Int., 2017, 43(12), p 8677–8684.CrossRef J. Huebner, D. Kata, J. Kusiński and P. Rutkowski, Microstructure of Laser Cladded Carbide Reinforced Inconel 625 Alloy for Turbine Blade Application, Ceram. Int., 2017, 43(12), p 8677–8684.CrossRef
17.
Zurück zum Zitat S. Li, Q. Wei, Y. Shi, Z. Zhu and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952.CrossRef S. Li, Q. Wei, Y. Shi, Z. Zhu and D. Zhang, Microstructure Characteristics of Inconel 625 Superalloy Manufactured by Selective Laser Melting, J. Mater. Sci. Technol., 2015, 31(9), p 946–952.CrossRef
18.
Zurück zum Zitat M. Liberini, A. Astarita, G. Campatelli, A. Scippa, F. Montevecchi, G. Venturini, M. Durante, L. Boccarusso, F.M.C. Minutolo and A. Squillace, Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing, Procedia CIRP, 2017, 62, p 470–474.CrossRef M. Liberini, A. Astarita, G. Campatelli, A. Scippa, F. Montevecchi, G. Venturini, M. Durante, L. Boccarusso, F.M.C. Minutolo and A. Squillace, Selection of Optimal Process Parameters for Wire Arc Additive Manufacturing, Procedia CIRP, 2017, 62, p 470–474.CrossRef
20.
Zurück zum Zitat G. Asala, A.K. Khan, J. Andersson and O.A. Ojo, Microstructural Analyses of ATI 718Plus Ò Produced by Wire-ARC Additive Manufacturing Process, Metall. Mater. Trans. A, 2017, 48, p 4211–4228.CrossRef G. Asala, A.K. Khan, J. Andersson and O.A. Ojo, Microstructural Analyses of ATI 718Plus Ò Produced by Wire-ARC Additive Manufacturing Process, Metall. Mater. Trans. A, 2017, 48, p 4211–4228.CrossRef
21.
Zurück zum Zitat J. Gu, J. Ding, S.W. Williams, H. Gu, P. Ma and Y. Zhai, The Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys, J. Mater. Process. Technol., 2016, 230, p 26–34.CrossRef J. Gu, J. Ding, S.W. Williams, H. Gu, P. Ma and Y. Zhai, The Effect of Inter-Layer Cold Working and Post-Deposition Heat Treatment on Porosity in Additively Manufactured Aluminum Alloys, J. Mater. Process. Technol., 2016, 230, p 26–34.CrossRef
24.
Zurück zum Zitat M. Sathishkumar and M. Manikandan, Influence of Pulsed Current Arc Welding to Preclude the Topological Phases in the Aerospace Grade Alloy X, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2020, 234(4), p 637–653. M. Sathishkumar and M. Manikandan, Influence of Pulsed Current Arc Welding to Preclude the Topological Phases in the Aerospace Grade Alloy X, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., 2020, 234(4), p 637–653.
25.
Zurück zum Zitat J. Stephen Leon, G. Bharathiraja and V. Jayakumar, Experimental and Numerical Investigations of Optimum Process Window for Friction Stir Welding Using Flat Faced Tool Pin, Indian J. Sci. Technol., 2020, 13(26), p 2609–2625.CrossRef J. Stephen Leon, G. Bharathiraja and V. Jayakumar, Experimental and Numerical Investigations of Optimum Process Window for Friction Stir Welding Using Flat Faced Tool Pin, Indian J. Sci. Technol., 2020, 13(26), p 2609–2625.CrossRef
26.
Zurück zum Zitat J. Stephen Leon, G. Bharathiraja, and V. Jayakumar, A Review on Friction Stir Welding in Aluminium Alloys, IOP Conf. Ser. Mater. Sci. Eng., 2020, 954, p 012007. J. Stephen Leon, G. Bharathiraja, and V. Jayakumar, A Review on Friction Stir Welding in Aluminium Alloys, IOP Conf. Ser. Mater. Sci. Eng., 2020, 954, p 012007.
28.
Zurück zum Zitat T.A.V. Kumaran, S.A.N.J. Reddy, S. Jerome, N. Anbarasan, N. Arivazhagan, M. Manikandan and M. Sathishkumar, Development of Pulsed Cold Metal Transfer and Gas Metal Arc Welding Techniques on High-Strength Aerospace-Grade AA7475-T761, J. Mater. Eng. Perform, 2020, 29(11), p 7270–7290.CrossRef T.A.V. Kumaran, S.A.N.J. Reddy, S. Jerome, N. Anbarasan, N. Arivazhagan, M. Manikandan and M. Sathishkumar, Development of Pulsed Cold Metal Transfer and Gas Metal Arc Welding Techniques on High-Strength Aerospace-Grade AA7475-T761, J. Mater. Eng. Perform, 2020, 29(11), p 7270–7290.CrossRef
29.
Zurück zum Zitat M. Sathishkumar, Y.J. Bhakat, K.G. Kumar, S. Giribaskar, R. Oyyaravelu, N. Arivazhagan and M. Manikandan, Investigation of Double-Pulsed Gas Metal Arc Welding Technique to Preclude Carbide Precipitates in Aerospace Grade Hastelloy X, J. Mater. Eng. Perform., 2020, 30(1), p 661–684. https://doi.org/10.1007/s11665-020-05360-1CrossRef M. Sathishkumar, Y.J. Bhakat, K.G. Kumar, S. Giribaskar, R. Oyyaravelu, N. Arivazhagan and M. Manikandan, Investigation of Double-Pulsed Gas Metal Arc Welding Technique to Preclude Carbide Precipitates in Aerospace Grade Hastelloy X, J. Mater. Eng. Perform., 2020, 30(1), p 661–684. https://​doi.​org/​10.​1007/​s11665-020-05360-1CrossRef
30.
Zurück zum Zitat M. Sathishkumar and M. Manikandan, Development of Pulsed Current Arc Welding to Preclude Carbide Precipitates in Hastelloy X Weldment Using ERNiCr-3, J. Mater. Eng. Perform., 2020, 29(8), p 5395–5408.CrossRef M. Sathishkumar and M. Manikandan, Development of Pulsed Current Arc Welding to Preclude Carbide Precipitates in Hastelloy X Weldment Using ERNiCr-3, J. Mater. Eng. Perform., 2020, 29(8), p 5395–5408.CrossRef
31.
Zurück zum Zitat J.S. Zuback and T. Debroy, The Hardness of Additively Manufactured Alloys, Materials (Basel)., 2018, 11, p 2070.CrossRef J.S. Zuback and T. Debroy, The Hardness of Additively Manufactured Alloys, Materials (Basel)., 2018, 11, p 2070.CrossRef
Metadaten
Titel
Technology Development for Producing Inconel 625 in Aerospace Application Using Wire Arc Additive Manufacturing Process
verfasst von
Anivesh Chintala
M. Tejaswi Kumar
M. Sathishkumar
N. Arivazhagan
M. Manikandan
Publikationsdatum
20.04.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 7/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05781-6

Weitere Artikel der Ausgabe 7/2021

Journal of Materials Engineering and Performance 7/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.