Skip to main content
Erschienen in: Experimental Mechanics 2/2012

01.02.2012

Temperature-Dependent Mechanical Response of an UFG Aluminum Alloy at High Rates

verfasst von: E. Huskins, B. Cao, B. Li, K. T. Ramesh

Erschienen in: Experimental Mechanics | Ausgabe 2/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

High temperature (298 K–573 K) and high strain rate (4000 s−1) compression experiments were performed on a cryomilled ultra-fine grained (UFG) Al-5083 using a modified Kolsky bar with a heating system designed to reduce “cold contact” time. The resulting stress strain curves show a reduction in strength of approximately 300 MPa at the highest temperature tested. This softening has been related to a thermally activated deformation mechanism. In addition, an experimental procedure was developed to investigate the microstructure evolution during the preheating, prior to mechanical loading, so as to identify the intrinsic mechanical response of the material at high temperatures. The results of this procedure are in good agreement with a TEM study on material that has been heated but not loaded.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cao B, Joshi SP, Ramesh KT (2009) Strengthening mechanisms in cryomilled ultrafine-grained aluminum alloy at quasi-static and dynamic rates of loading. Scr Mater 60(8):619–622CrossRef Cao B, Joshi SP, Ramesh KT (2009) Strengthening mechanisms in cryomilled ultrafine-grained aluminum alloy at quasi-static and dynamic rates of loading. Scr Mater 60(8):619–622CrossRef
2.
Zurück zum Zitat Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A-Phys Metall Mater Sci 31(3):691–701CrossRef Horita Z, Fujinami T, Nemoto M, Langdon TG (2000) Equal-channel angular pressing of commercial aluminum alloys: grain refinement, thermal stability and tensile properties. Metall Mater Trans A-Phys Metall Mater Sci 31(3):691–701CrossRef
3.
Zurück zum Zitat Han BQ, Lavernia EJ, Mohamed FA (2005) Mechanical properties of nanostructured materials. Rev Adv Mater Sci 9(1):1–16 Han BQ, Lavernia EJ, Mohamed FA (2005) Mechanical properties of nanostructured materials. Rev Adv Mater Sci 9(1):1–16
4.
Zurück zum Zitat Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53(5):481–486CrossRef Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53(5):481–486CrossRef
5.
Zurück zum Zitat Chawla N, Shen YL (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3(6):357–370CrossRef Chawla N, Shen YL (2001) Mechanical behavior of particle reinforced metal matrix composites. Adv Eng Mater 3(6):357–370CrossRef
6.
Zurück zum Zitat Timothy SP (1987) The structure of adiabatic shear bands in metals - A critical-review. Acta Metallurgica 35(2):301–306CrossRef Timothy SP (1987) The structure of adiabatic shear bands in metals - A critical-review. Acta Metallurgica 35(2):301–306CrossRef
7.
Zurück zum Zitat Owolabi GM, Odeshi AG, Singh MNK, Bassim MN (2007) Dynamic shear band formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 composites. Mater Sci Eng A-Struct Mater Prop Microstruct Process 457(1–2):114–119CrossRef Owolabi GM, Odeshi AG, Singh MNK, Bassim MN (2007) Dynamic shear band formation in Aluminum 6061-T6 and Aluminum 6061-T6/Al2O3 composites. Mater Sci Eng A-Struct Mater Prop Microstruct Process 457(1–2):114–119CrossRef
8.
Zurück zum Zitat Mason JJ, Rosakis AJ, Ravichandran G (1994) On the strain and strain-rate dependence of the fraction of plastic work converted to heat - An experimental-study using high-speed infrared detectors and the Kolsky bar. Mech Mater 17(2–3):135–145CrossRef Mason JJ, Rosakis AJ, Ravichandran G (1994) On the strain and strain-rate dependence of the fraction of plastic work converted to heat - An experimental-study using high-speed infrared detectors and the Kolsky bar. Mech Mater 17(2–3):135–145CrossRef
9.
Zurück zum Zitat Kapoor R, Nemat-Nasser S (1998) Determination of temperature rise during high strain rate deformation. Mech Mater 27(1):1–12CrossRef Kapoor R, Nemat-Nasser S (1998) Determination of temperature rise during high strain rate deformation. Mech Mater 27(1):1–12CrossRef
10.
Zurück zum Zitat Davis JR (ed) (1993) ASM specialty handbook: aluminum and aluminum alloys. ASM International, Materials Park Davis JR (ed) (1993) ASM specialty handbook: aluminum and aluminum alloys. ASM International, Materials Park
11.
Zurück zum Zitat Han BQ, Lavernia EJ (2005) High-temperature behavior of a cryomilled ultrafine-grained Al-7.5% Mg alloy. Mater Sci Eng A-Struct Mater Prop Microstruct Process 410:417–421CrossRef Han BQ, Lavernia EJ (2005) High-temperature behavior of a cryomilled ultrafine-grained Al-7.5% Mg alloy. Mater Sci Eng A-Struct Mater Prop Microstruct Process 410:417–421CrossRef
12.
Zurück zum Zitat Hsiao IC, Huang JC (2002) Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy. Metall Mater Trans A-Phys Metall Mater Sci 33(5):1373–1384CrossRef Hsiao IC, Huang JC (2002) Deformation mechanisms during low- and high-temperature superplasticity in 5083 Al-Mg alloy. Metall Mater Trans A-Phys Metall Mater Sci 33(5):1373–1384CrossRef
13.
Zurück zum Zitat Gubicza J, Chinh NQ, Horita Z, Langdon TG (2004) Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater Sci Eng A-Struct Mater Prop Microstruct Process 387:55–59CrossRef Gubicza J, Chinh NQ, Horita Z, Langdon TG (2004) Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater Sci Eng A-Struct Mater Prop Microstruct Process 387:55–59CrossRef
14.
Zurück zum Zitat Lennon AM, Ramesh KT (1998) A technique for measuring the dynamic behavior of materials at high temperatures. Int J Plast 14(12):1279–1292CrossRef Lennon AM, Ramesh KT (1998) A technique for measuring the dynamic behavior of materials at high temperatures. Int J Plast 14(12):1279–1292CrossRef
15.
Zurück zum Zitat Lee WS, Lin CF (1998) Plastic deformation and fracture behaviour of Ti-6Al-4 V alloy loaded with high strain rate under various temperatures. Mater Sci Eng A-Struct Mater Prop Microstruct Process 241(1–2):48–59CrossRef Lee WS, Lin CF (1998) Plastic deformation and fracture behaviour of Ti-6Al-4 V alloy loaded with high strain rate under various temperatures. Mater Sci Eng A-Struct Mater Prop Microstruct Process 241(1–2):48–59CrossRef
16.
Zurück zum Zitat Khan AS, Liang RQ (1999) Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. Int J Plast 15(10):1089–1109MATHCrossRef Khan AS, Liang RQ (1999) Behaviors of three BCC metal over a wide range of strain rates and temperatures: experiments and modeling. Int J Plast 15(10):1089–1109MATHCrossRef
17.
Zurück zum Zitat Gray GT, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, AND Al-4Cu-0.5Zr. Nanostruct Mater 9(1–8):477–480CrossRef Gray GT, Lowe TC, Cady CM, Valiev RZ, Aleksandrov IV (1997) Influence of strain rate & temperature on the mechanical response of ultrafine-grained Cu, Ni, AND Al-4Cu-0.5Zr. Nanostruct Mater 9(1–8):477–480CrossRef
18.
Zurück zum Zitat Mates S, Rhorer R, Whitenton E, Burns T, Basak D (2008) A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates. Exp Mech 48(6):799CrossRef Mates S, Rhorer R, Whitenton E, Burns T, Basak D (2008) A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates. Exp Mech 48(6):799CrossRef
19.
Zurück zum Zitat Song B, Chen W, Yanagita T, Frew DJ (2005) Temperature effects on dynamic compressive behavior of an epoxy syntactic foam. Compos Struct 67(3):289CrossRef Song B, Chen W, Yanagita T, Frew DJ (2005) Temperature effects on dynamic compressive behavior of an epoxy syntactic foam. Compos Struct 67(3):289CrossRef
20.
Zurück zum Zitat Roy I, Chauhan M, Lavernia EJ, Mohamed FA (2006) Thermal stability in bulk cryomilled ultrafine-grained 5083 Al alloy. Metall Mater Trans A-Phys Metall Mater Sci 37A(3):721–730CrossRef Roy I, Chauhan M, Lavernia EJ, Mohamed FA (2006) Thermal stability in bulk cryomilled ultrafine-grained 5083 Al alloy. Metall Mater Trans A-Phys Metall Mater Sci 37A(3):721–730CrossRef
21.
Zurück zum Zitat Huang B, Perez RJ, Lavernia EJ (1998) Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen. Mater Sci Eng A-Struct Mater Prop Microstruct Process 255(1–2):124–132CrossRef Huang B, Perez RJ, Lavernia EJ (1998) Grain growth of nanocrystalline Fe-Al alloys produced by cryomilling in liquid argon and nitrogen. Mater Sci Eng A-Struct Mater Prop Microstruct Process 255(1–2):124–132CrossRef
22.
Zurück zum Zitat Zhou F, Lee J, Dallek S, Lavernia EJ (2001) High grain size stability of nanocrystalline Al prepared by mechanical attrition. J Mater Res 16(12):3451–3458CrossRef Zhou F, Lee J, Dallek S, Lavernia EJ (2001) High grain size stability of nanocrystalline Al prepared by mechanical attrition. J Mater Res 16(12):3451–3458CrossRef
23.
Zurück zum Zitat Jiang HG, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A-Struct Mater Prop Microstruct Process 290(1–2):128–138CrossRef Jiang HG, Zhu YT, Butt DP, Alexandrov IV, Lowe TC (2000) Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Mater Sci Eng A-Struct Mater Prop Microstruct Process 290(1–2):128–138CrossRef
24.
Zurück zum Zitat Klement U, Erb U, ElSherik AM, Aust KT (1995) Thermal stability of nanocrystalline Ni. Mater Sci Eng A-Struct Mater Prop Microstruct Process 203(1–2):177–186CrossRef Klement U, Erb U, ElSherik AM, Aust KT (1995) Thermal stability of nanocrystalline Ni. Mater Sci Eng A-Struct Mater Prop Microstruct Process 203(1–2):177–186CrossRef
25.
Zurück zum Zitat Topping T, Lavernia EJ (2010) The cyclic fatigue, damage initiation, propagation and fracture behavior of cryomilled aluminum alloy 5083: influence of secondary processing. In: Srivatsan TS, Ashraf Inman M (eds) Fatigue of materials: advances and emergences in understanding. A John Wiley & Sons Publication, WILEY, pp 147–168CrossRef Topping T, Lavernia EJ (2010) The cyclic fatigue, damage initiation, propagation and fracture behavior of cryomilled aluminum alloy 5083: influence of secondary processing. In: Srivatsan TS, Ashraf Inman M (eds) Fatigue of materials: advances and emergences in understanding. A John Wiley & Sons Publication, WILEY, pp 147–168CrossRef
26.
Zurück zum Zitat Lennon A (1998) Ph.D. dissertation, Johns Hopkins University, Baltimore MD Lennon A (1998) Ph.D. dissertation, Johns Hopkins University, Baltimore MD
27.
Zurück zum Zitat Nemat-Nasser S, Isaacs JB, Liu MQ (1998) Microstructure of high-strain, high-strain-rate deformed tantalum. Acta Mater 46(4):1307–1325CrossRef Nemat-Nasser S, Isaacs JB, Liu MQ (1998) Microstructure of high-strain, high-strain-rate deformed tantalum. Acta Mater 46(4):1307–1325CrossRef
28.
Zurück zum Zitat Shazly M, Prakash V, Draper S (2004) Mechanical behavior of Gamma-Met PX under uniaxial loading at elevated temperatures and high strain rates. Int J Solids Struct 41(22–23):6485–6503CrossRef Shazly M, Prakash V, Draper S (2004) Mechanical behavior of Gamma-Met PX under uniaxial loading at elevated temperatures and high strain rates. Int J Solids Struct 41(22–23):6485–6503CrossRef
29.
Zurück zum Zitat Li YL, Guo YZ, Hu HT, Wei Q (2009) A critical assessment of high-temperature dynamic mechanical testing of metals. Int J Impact Eng 36(2):177–184CrossRef Li YL, Guo YZ, Hu HT, Wei Q (2009) A critical assessment of high-temperature dynamic mechanical testing of metals. Int J Impact Eng 36(2):177–184CrossRef
30.
Zurück zum Zitat Cottrell AH, Stokes RJ (1955) Effects of temperature on the plastic properties of aluminium crystals. Proc R Soc Lond Ser A-Math Phys Sci 233(1192):17–34CrossRef Cottrell AH, Stokes RJ (1955) Effects of temperature on the plastic properties of aluminium crystals. Proc R Soc Lond Ser A-Math Phys Sci 233(1192):17–34CrossRef
31.
Zurück zum Zitat Huskins EL, Cao B, Ramesh KT (2010) Strengthening mechanisms in an Al-Mg alloy. Mater Sci Eng A-Struct Mater Prop Microstruct Process 527(6):1292–1298CrossRef Huskins EL, Cao B, Ramesh KT (2010) Strengthening mechanisms in an Al-Mg alloy. Mater Sci Eng A-Struct Mater Prop Microstruct Process 527(6):1292–1298CrossRef
32.
Zurück zum Zitat Han BQ, Lavernia EJ (2005) Deformation mechanisms of nanostructured Al alloys. Adv Eng Mater 7(6):457–465CrossRef Han BQ, Lavernia EJ (2005) Deformation mechanisms of nanostructured Al alloys. Adv Eng Mater 7(6):457–465CrossRef
33.
Zurück zum Zitat Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Negative strain-rate sensitivity in a nanostructured aluminum alloy. Adv Eng Mater 8(10):945–947CrossRef Han BQ, Huang JY, Zhu YT, Lavernia EJ (2006) Negative strain-rate sensitivity in a nanostructured aluminum alloy. Adv Eng Mater 8(10):945–947CrossRef
34.
Zurück zum Zitat Joshi SP, Eberl C, Cao B, Ramesh KT, Hemker KJ (2009) On the occurrence of Portevin-Le Chatelier instabilities in ultrafine-grained 5083 aluminum alloys. Exp Mech 49(2):207–218CrossRef Joshi SP, Eberl C, Cao B, Ramesh KT, Hemker KJ (2009) On the occurrence of Portevin-Le Chatelier instabilities in ultrafine-grained 5083 aluminum alloys. Exp Mech 49(2):207–218CrossRef
35.
Zurück zum Zitat Dorn J, Mitchell J, Hauser F (1965) Dislocation dynamics. Exp Mech 5(11):353CrossRef Dorn J, Mitchell J, Hauser F (1965) Dislocation dynamics. Exp Mech 5(11):353CrossRef
36.
Zurück zum Zitat Clausen AH, Borvik T, Hopperstad OS, Benallal A (2004) Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A-Struct Mater Prop Microstruct Process 364(1–2):260–272CrossRef Clausen AH, Borvik T, Hopperstad OS, Benallal A (2004) Flow and fracture characteristics of aluminium alloy AA5083-H116 as function of strain rate, temperature and triaxiality. Mater Sci Eng A-Struct Mater Prop Microstruct Process 364(1–2):260–272CrossRef
37.
Zurück zum Zitat Lloyd DJ (1980) The deformation of commercial aluminum-magnesium alloys. Metall Trans A-Phys Metall Mater Sci 11(8):1287–1294CrossRef Lloyd DJ (1980) The deformation of commercial aluminum-magnesium alloys. Metall Trans A-Phys Metall Mater Sci 11(8):1287–1294CrossRef
38.
Zurück zum Zitat Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390(1–2):334–343CrossRef Picu RC, Vincze G, Ozturk F, Gracio JJ, Barlat F, Maniatty AM (2005) Strain rate sensitivity of the commercial aluminum alloy AA5182-O. Mater Sci Eng A-Struct Mater Prop Microstruct Process 390(1–2):334–343CrossRef
39.
Zurück zum Zitat Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–281CrossRef Kocks UF, Argon AS, Ashby MF (1975) Thermodynamics and kinetics of slip. Prog Mater Sci 19:1–281CrossRef
40.
Zurück zum Zitat Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica 36(1):81–93CrossRef Follansbee PS, Kocks UF (1988) A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica 36(1):81–93CrossRef
41.
Zurück zum Zitat Ono K (1968) Temperature dependence of dispersed barrier hardening. J Appl Phys 39(3):1803–1806CrossRef Ono K (1968) Temperature dependence of dispersed barrier hardening. J Appl Phys 39(3):1803–1806CrossRef
42.
Zurück zum Zitat Kok S, Beaudoin AJ, Tortorelli DA (2002) A polycrystal plasticity model based on the mechanical threshold. Int J Plast 18(5–6):715–741MATHCrossRef Kok S, Beaudoin AJ, Tortorelli DA (2002) A polycrystal plasticity model based on the mechanical threshold. Int J Plast 18(5–6):715–741MATHCrossRef
43.
Zurück zum Zitat Sutton PM (1953) The variation of the elastic constants of crystalline aluminum with temperature between 63-degrees-K and 773-degrees-K. Phys Rev 91(4):816–821MathSciNetCrossRef Sutton PM (1953) The variation of the elastic constants of crystalline aluminum with temperature between 63-degrees-K and 773-degrees-K. Phys Rev 91(4):816–821MathSciNetCrossRef
44.
Zurück zum Zitat Macgregor CW, Fisher JC (1946) A velocity-modified temperature for the plastic flow of metals. J Appl Mech-Trans ASME 13(1):A11–A16 Macgregor CW, Fisher JC (1946) A velocity-modified temperature for the plastic flow of metals. J Appl Mech-Trans ASME 13(1):A11–A16
45.
Zurück zum Zitat Banerjee B, Bhawalkar AS (2008) An extended mechanical threshold stress plasticity model: modeling 6061-T6 aluminum alloy. J Mech Mater Struct 3(3):391–424CrossRef Banerjee B, Bhawalkar AS (2008) An extended mechanical threshold stress plasticity model: modeling 6061-T6 aluminum alloy. J Mech Mater Struct 3(3):391–424CrossRef
Metadaten
Titel
Temperature-Dependent Mechanical Response of an UFG Aluminum Alloy at High Rates
verfasst von
E. Huskins
B. Cao
B. Li
K. T. Ramesh
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 2/2012
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-011-9565-1

Weitere Artikel der Ausgabe 2/2012

Experimental Mechanics 2/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.