Skip to main content
Erschienen in: Wireless Networks 1/2022

11.01.2022 | Original Paper

Testing Solar-MAODV energy efficient model on various modulation techniques in wireless sensor and optical networks

verfasst von: Mohit Angurala, Harmeet Singh, Anupriya, Amit Grover, Mehtab Singh

Erschienen in: Wireless Networks | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Wireless sensor networks (WSNs) suffer from energy imbalance and short lifespan among the sensor nodes placed near sink node. To optimally resolve the problem of battery of sensor nodes (SNs), many researchers have found new harvesting methods from environment or other sources, such as: solar power, vibrational energy harvesting, and magnetic resonant coupling. In this paper, we have carried out the research using three-step method. In the first step, solar based modified adhoc on-demand distance vector (Solar-MAODV) is proposed which is an improved recharging method that uses energy harvesting and congestion free routing to extend network lifetime. Also, the proposed scheme is a widely adopted combination of data collection, recharging and load balancing. Therefore, in the second step, the proposed scheme is validated by comparing its performance with existing joint mobile energy replenishment and data gathering (J-MERDG) and joint energy replenishment and load balancing (J-ERLB) techniques. Finally, in the last step, Solar-MAODV is tested on various modulation schemes to find the best modulation scheme for long range wireless rechargeable sensor networks (WRSNs). The main aim of research work is to propose robust and efficient scheme for extending lifespan of sensor nodes and to find out best modulation scheme for WRSNs so that they can support long range transmissions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wei, X., Wang, Z., & Dai, H. (2014). A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies, 7(7), 4316–4341.CrossRef Wei, X., Wang, Z., & Dai, H. (2014). A critical review of wireless power transfer via strongly coupled magnetic resonances. Energies, 7(7), 4316–4341.CrossRef
2.
Zurück zum Zitat Baghee, S., Chamanian, S., Ulusan, H., Zorlu, O., Uysal-Biyikoglu, E., & Kulah, H., (2014). Demonstration of energy-neutral operation on a WSN testbed using vibration energy harvesting, in Proceedings of the 20th European Wireless Conference (EW '14), 47–52. Baghee, S., Chamanian, S., Ulusan, H., Zorlu, O., Uysal-Biyikoglu, E., & Kulah, H., (2014). Demonstration of energy-neutral operation on a WSN testbed using vibration energy harvesting, in Proceedings of the 20th European Wireless Conference (EW '14), 47–52.
3.
Zurück zum Zitat Buchli, B., Sutton, F., Beutel, J., & Thiele, L., (2014). Dynamic power management for long-term energy neutral operation of solar energy harvesting systems. in Proceedings of the 12th ACM Conference, 31–45. Buchli, B., Sutton, F., Beutel, J., & Thiele, L., (2014). Dynamic power management for long-term energy neutral operation of solar energy harvesting systems. in Proceedings of the 12th ACM Conference, 31–45.
4.
Zurück zum Zitat Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRef Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRef
5.
Zurück zum Zitat Hester, J., Scott, T., & Sorber, J., (2014). Ekho: realistic and repeatable experimentation for tiny energy-harvesting sensors. in Proceedings of the 12th ACM Conference on Embedded Networked Sensor Systems (SenSys '14), 1–15. Hester, J., Scott, T., & Sorber, J., (2014). Ekho: realistic and repeatable experimentation for tiny energy-harvesting sensors. in Proceedings of the 12th ACM Conference on Embedded Networked Sensor Systems (SenSys '14), 1–15.
6.
Zurück zum Zitat Park, J., & Clerckx, B. (2014). Joint wireless information and energy transfer in a K-user MIMO interference channel. IEEE Transactions on Wireless Communications, 13(10), 5781–5796.CrossRef Park, J., & Clerckx, B. (2014). Joint wireless information and energy transfer in a K-user MIMO interference channel. IEEE Transactions on Wireless Communications, 13(10), 5781–5796.CrossRef
7.
Zurück zum Zitat Peng, S., Wang, T., & Low, C. P. (2015). Energy neutral clustering for energy harvesting wireless sensors networks. Ad Hoc Networks, 28, 1–16.CrossRef Peng, S., Wang, T., & Low, C. P. (2015). Energy neutral clustering for energy harvesting wireless sensors networks. Ad Hoc Networks, 28, 1–16.CrossRef
8.
Zurück zum Zitat Cao, S., & Li, J. (2017). A survey on ambient energy sourcesand harvesting methods for structuralhealth monitoring applications. Advances in Mechanical Engineering, 9(4), 1–14.CrossRef Cao, S., & Li, J. (2017). A survey on ambient energy sourcesand harvesting methods for structuralhealth monitoring applications. Advances in Mechanical Engineering, 9(4), 1–14.CrossRef
9.
Zurück zum Zitat Angurala, M., Bamber, S. S., Bala, M., (2017). Evaluating performance of different modulation schemes on modified cooperative aodv. International Interdisciplinary Conference on Science Technology Engineering Management Pharmacy and Humanities, 1–5. Angurala, M., Bamber, S. S., Bala, M., (2017). Evaluating performance of different modulation schemes on modified cooperative aodv. International Interdisciplinary Conference on Science Technology Engineering Management Pharmacy and Humanities, 1–5.
10.
Zurück zum Zitat Liu, X., Qiu, T., & Wang, T. (2019). Load-balanced data dissemination for wireless sensor networks: A nature-inspired approach. IEEE Internet of Things Journal, 6(6), 9256–9265.CrossRef Liu, X., Qiu, T., & Wang, T. (2019). Load-balanced data dissemination for wireless sensor networks: A nature-inspired approach. IEEE Internet of Things Journal, 6(6), 9256–9265.CrossRef
11.
Zurück zum Zitat Chatterjee, P., Ghosh, S. C., & Das, N. (2017). Load balanced coverage with graded node deployment in wireless sensor networks. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 100–112.CrossRef Chatterjee, P., Ghosh, S. C., & Das, N. (2017). Load balanced coverage with graded node deployment in wireless sensor networks. IEEE Transactions on Multi-Scale Computing Systems, 3(2), 100–112.CrossRef
12.
Zurück zum Zitat Liao, Y., Qi, H., & Li, W. (2013). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors Journal, 13(5), 1498–1506.CrossRef Liao, Y., Qi, H., & Li, W. (2013). Load-balanced clustering algorithm with distributed self-organization for wireless sensor networks. IEEE Sensors Journal, 13(5), 1498–1506.CrossRef
13.
Zurück zum Zitat Chen, C., Mukhopadhyay, S. C., Chuang, C., Liu, M., & Jiang, J. (2015). Efficient coverage and connectivity preservation with load balance for wireless sensor networks. IEEE Sensors Journal, 15(1), 48–62.CrossRef Chen, C., Mukhopadhyay, S. C., Chuang, C., Liu, M., & Jiang, J. (2015). Efficient coverage and connectivity preservation with load balance for wireless sensor networks. IEEE Sensors Journal, 15(1), 48–62.CrossRef
14.
Zurück zum Zitat Zhang, W., Wang, C., Xiao, F., Xiong, N., & Chang, J. (2019). Reliable storage system with priority filter and load balance collection model for large scale sensor networks. IEEE Access, 7, 184078–184089.CrossRef Zhang, W., Wang, C., Xiao, F., Xiong, N., & Chang, J. (2019). Reliable storage system with priority filter and load balance collection model for large scale sensor networks. IEEE Access, 7, 184078–184089.CrossRef
15.
Zurück zum Zitat Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef Zhao, M., Li, J., & Yang, Y. (2014). A framework of joint mobile energy replenishment and data gathering in wireless rechargeable sensor networks. IEEE Transactions on Mobile Computing, 13(12), 2689–2705.CrossRef
16.
Zurück zum Zitat Edla, D. R., Lipare, A., Cheruku, R., & Kuppilli, V. (2017). An efficient load balancing of gateways using improved shuffled frog leaping algorithm and novel fitness function for WSNs. IEEE Sensors Journal, 17(20), 6724–6733.CrossRef Edla, D. R., Lipare, A., Cheruku, R., & Kuppilli, V. (2017). An efficient load balancing of gateways using improved shuffled frog leaping algorithm and novel fitness function for WSNs. IEEE Sensors Journal, 17(20), 6724–6733.CrossRef
17.
Zurück zum Zitat Li, X., Keegan, B., Mtenzi, F., Weise, T., & Tan, M. (2019). Energy-efficient load balancing ant based routing algorithm for wireless sensor networks. IEEE Access, 7, 113182–113196.CrossRef Li, X., Keegan, B., Mtenzi, F., Weise, T., & Tan, M. (2019). Energy-efficient load balancing ant based routing algorithm for wireless sensor networks. IEEE Access, 7, 113182–113196.CrossRef
18.
Zurück zum Zitat Yigit, M., Boluk, P. S., & Gungor, V. C. (2019). A new efficient error control algorithm for wireless sensor networks in smart grid. Computer Standards & Interfaces, 63, 27–42.CrossRef Yigit, M., Boluk, P. S., & Gungor, V. C. (2019). A new efficient error control algorithm for wireless sensor networks in smart grid. Computer Standards & Interfaces, 63, 27–42.CrossRef
19.
Zurück zum Zitat Elshrkawey, M., Elsherif, S. M., & Wahed, M. E. (2019). An enhancement approach for reducing the energy consumption in wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 30(2), 259–267.CrossRef Elshrkawey, M., Elsherif, S. M., & Wahed, M. E. (2019). An enhancement approach for reducing the energy consumption in wireless sensor networks. Journal of King Saud University - Computer and Information Sciences, 30(2), 259–267.CrossRef
20.
Zurück zum Zitat Naik, M. S., & Kumar, V. (2017). Modulation aware cluster size optimisation in wireless sensor networks. International Journal of Electronics, 104(7), 1161–1177.CrossRef Naik, M. S., & Kumar, V. (2017). Modulation aware cluster size optimisation in wireless sensor networks. International Journal of Electronics, 104(7), 1161–1177.CrossRef
21.
Zurück zum Zitat Shivaprakasha, K. S., Kulkarni, M., & Patkar, R. (2013). Performance analysis of energy efficient modulation and coding schemes for wireless sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 28(6), 576–589.CrossRef Shivaprakasha, K. S., Kulkarni, M., & Patkar, R. (2013). Performance analysis of energy efficient modulation and coding schemes for wireless sensor networks. International Journal of Parallel, Emergent and Distributed Systems, 28(6), 576–589.CrossRef
22.
Zurück zum Zitat Anane, R., Raoof, K., & Bouallegue, R. (2016). Minimization of wireless sensor network energy consumption through optimal modulation scheme and channel coding strategy. Journal of Signal Processing System, 83, 65–81.CrossRef Anane, R., Raoof, K., & Bouallegue, R. (2016). Minimization of wireless sensor network energy consumption through optimal modulation scheme and channel coding strategy. Journal of Signal Processing System, 83, 65–81.CrossRef
23.
Zurück zum Zitat Gumusalan, A., Simon, R., & Aydin, H. (2020). Dynamic modulation scaling enabled multi-hop topology control for time critical wireless sensor networks. Wireless Networks, 26, 1203–1226.CrossRef Gumusalan, A., Simon, R., & Aydin, H. (2020). Dynamic modulation scaling enabled multi-hop topology control for time critical wireless sensor networks. Wireless Networks, 26, 1203–1226.CrossRef
24.
Zurück zum Zitat Abouei, J., Plataniotis, K. N., & Pasupathy, S. (2011). Green modulations in energy-constrained wireless sensor networks. IET Communications, 5(2), 240–251.MathSciNetCrossRef Abouei, J., Plataniotis, K. N., & Pasupathy, S. (2011). Green modulations in energy-constrained wireless sensor networks. IET Communications, 5(2), 240–251.MathSciNetCrossRef
25.
Zurück zum Zitat Angurala, M., Bala, M., & Bamber, S. S. (2020). Performance analysis of modified AODV routing protocol with lifetime extension of wireless sensor networks. IEEE Access, 8, 10606–10613.CrossRef Angurala, M., Bala, M., & Bamber, S. S. (2020). Performance analysis of modified AODV routing protocol with lifetime extension of wireless sensor networks. IEEE Access, 8, 10606–10613.CrossRef
26.
Zurück zum Zitat Kabir, A., Hassan, M., Hossain, N., Paul, B. K., & Ahmed, K. (2020). Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission. Optics Communications, 467, 125731.CrossRef Kabir, A., Hassan, M., Hossain, N., Paul, B. K., & Ahmed, K. (2020). Design and performance evaluation of photonic crystal fibers of supporting orbital angular momentum states in optical transmission. Optics Communications, 467, 125731.CrossRef
28.
Zurück zum Zitat Hassan, M., Ahmed, K., Paul, B. K., Hossain, N., & Ahmed, F. A. Z. (2021). Anomalous birefringence and nonlinearity enhancement of As2S3 and As2S5 filled D-shape fiber for optical communication. Physica Scripta, 96(11), 115501.CrossRef Hassan, M., Ahmed, K., Paul, B. K., Hossain, N., & Ahmed, F. A. Z. (2021). Anomalous birefringence and nonlinearity enhancement of As2S3 and As2S5 filled D-shape fiber for optical communication. Physica Scripta, 96(11), 115501.CrossRef
29.
Zurück zum Zitat Vigneswaran, D., Rajan, M. S. M., Biswas, B., Grover, A., Ahmed, K., & Paul, B. K. (2021). Numerical investigation of spiral photonic crystal fiber (S-PCF) with supporting high order OAM modes propagation for space division multiplexing applications. Optical and Quantum Electronics, 53, 78.CrossRef Vigneswaran, D., Rajan, M. S. M., Biswas, B., Grover, A., Ahmed, K., & Paul, B. K. (2021). Numerical investigation of spiral photonic crystal fiber (S-PCF) with supporting high order OAM modes propagation for space division multiplexing applications. Optical and Quantum Electronics, 53, 78.CrossRef
30.
Zurück zum Zitat Kabir, A., Ahmed, K., Hassan, M., Hossain, M., & Paul, B. K. (2020). Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication. Optics Communications, 475, 126192.CrossRef Kabir, A., Ahmed, K., Hassan, M., Hossain, M., & Paul, B. K. (2020). Design a photonic crystal fiber of guiding terahertz orbital angular momentum beams in optical communication. Optics Communications, 475, 126192.CrossRef
31.
Zurück zum Zitat Hassan, M. M., Kabir, M. A., Hossain, M. N., Truong, K. N., Paul, B. K., Ahmed, K., & Vigneswaran, D. (2020). Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission. Applied Physics B, 126, 145.CrossRef Hassan, M. M., Kabir, M. A., Hossain, M. N., Truong, K. N., Paul, B. K., Ahmed, K., & Vigneswaran, D. (2020). Numerical analysis of circular core shaped photonic crystal fiber for orbital angular momentum with efficient transmission. Applied Physics B, 126, 145.CrossRef
33.
Zurück zum Zitat Anwar, Z. A., Masroor, S., & Aamir, M. (2019). UAV based data gathering in wireless sensor networks. Wireless Personal Communications., 106(4), 1801–1811.CrossRef Anwar, Z. A., Masroor, S., & Aamir, M. (2019). UAV based data gathering in wireless sensor networks. Wireless Personal Communications., 106(4), 1801–1811.CrossRef
34.
Zurück zum Zitat Muhammad, R. R., Lee, J., & Kim, D. (2019). Hybrid mac protocol for uav-assisted data gathering in a wireless sensor network. Internet of Things, 14, 100088. Muhammad, R. R., Lee, J., & Kim, D. (2019). Hybrid mac protocol for uav-assisted data gathering in a wireless sensor network. Internet of Things, 14, 100088.
35.
Zurück zum Zitat Angurala, M., Bala, M., & Bamber, S. S. (2021). A novel technique for energy replenishment and load balancing in wireless sensor networks. Optik Journal, 248(2021), 1–10. Angurala, M., Bala, M., & Bamber, S. S. (2021). A novel technique for energy replenishment and load balancing in wireless sensor networks. Optik Journal, 248(2021), 1–10.
Metadaten
Titel
Testing Solar-MAODV energy efficient model on various modulation techniques in wireless sensor and optical networks
verfasst von
Mohit Angurala
Harmeet Singh
Anupriya
Amit Grover
Mehtab Singh
Publikationsdatum
11.01.2022
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 1/2022
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-021-02861-2

Weitere Artikel der Ausgabe 1/2022

Wireless Networks 1/2022 Zur Ausgabe