Skip to main content
Erschienen in: Engineering with Computers 1/2021

28.06.2019 | Original Article

The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method

verfasst von: Pouria Assari, Fatemeh Asadi-Mehregan

Erschienen in: Engineering with Computers | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The charged particle motion for certain configurations of oscillating magnetic fields can be simulated by a Volterra integro-differential equation of the second order with time-periodic coefficients. This paper investigates a simple and accurate scheme for computationally solving these types of integro-differential equations. To start the method, we first reduce the integro-differential equations to equivalent Volterra integral equations of the second kind. Subsequently, the solution of the mentioned Volterra integral equations is estimated by the collocation method based on the local multiquadrics formulated on scattered points. We also expand the proposed method to solve fractional integro-differential equations including non-integer order derivatives. Since the offered method does not need any mesh generations on the solution domain, it can be recognized as a meshless method. To demonstrate the reliability and efficiency of the new technique, several illustrative examples are given. Moreover, the numerical results confirm that the method developed in the current paper in comparison with the method based on the globally supported multiquadrics has much lesser volume computing.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dehghan M, Shakeri F (2008) Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Prog Electromagn Res 78:361–376 Dehghan M, Shakeri F (2008) Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method. Prog Electromagn Res 78:361–376
2.
Zurück zum Zitat Maleknejad K, Hadizadeh M, Attary M (2013) On the approximate solution of integro-differential equations arising in oscillating magnetic fields. Appl Math 58(5):595–607MathSciNetMATH Maleknejad K, Hadizadeh M, Attary M (2013) On the approximate solution of integro-differential equations arising in oscillating magnetic fields. Appl Math 58(5):595–607MathSciNetMATH
3.
Zurück zum Zitat Machado JM, Tsuchida M (2002) Solutions for a class of integro-differential equations with time periodic coefficients. Appl Math E-Notes 2:66–71MathSciNetMATH Machado JM, Tsuchida M (2002) Solutions for a class of integro-differential equations with time periodic coefficients. Appl Math E-Notes 2:66–71MathSciNetMATH
4.
Zurück zum Zitat Wazwaz AM (2011) Linear and nonlinear integral equations: methods and applications. Springer, HeidelbergMATH Wazwaz AM (2011) Linear and nonlinear integral equations: methods and applications. Springer, HeidelbergMATH
5.
Zurück zum Zitat Pathak M, Joshi P (2014) High order numerical solution of a Volterra integro-differential equation arising in oscillating magnetic fields using variational iteration method. Int J Adv Sci Tech 69:47–56 Pathak M, Joshi P (2014) High order numerical solution of a Volterra integro-differential equation arising in oscillating magnetic fields using variational iteration method. Int J Adv Sci Tech 69:47–56
6.
Zurück zum Zitat Brunner H, Makroglou A, Miller RK (1997) Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution. Appl Numer Math 23(4):381–402MathSciNetMATH Brunner H, Makroglou A, Miller RK (1997) Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution. Appl Numer Math 23(4):381–402MathSciNetMATH
7.
Zurück zum Zitat Li F, Yan T, Su L (2014) Solution of an integral-differential equation arising in oscillating magnetic fields using local polynomial regression. Adv Mech Eng 1–9:2014 Li F, Yan T, Su L (2014) Solution of an integral-differential equation arising in oscillating magnetic fields using local polynomial regression. Adv Mech Eng 1–9:2014
8.
Zurück zum Zitat Khan Y, Ghasemi M, Vahdati S, Fardi M (2014) Legendre multi-wavelets to solve oscillating magnetic fields integro-differential equations. UPB Sci Bull Ser A 76(1):51–58MathSciNetMATH Khan Y, Ghasemi M, Vahdati S, Fardi M (2014) Legendre multi-wavelets to solve oscillating magnetic fields integro-differential equations. UPB Sci Bull Ser A 76(1):51–58MathSciNetMATH
9.
Zurück zum Zitat Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218(9):5292–5309MathSciNetMATH Parand K, Rad JA (2012) Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions. Appl Math Comput 218(9):5292–5309MathSciNetMATH
10.
Zurück zum Zitat Ghasemi M (2014) Numerical technique for integro-differential equations arising in oscillating magnetic fields. Iran J Sci Technol A 38(4):473–479MathSciNet Ghasemi M (2014) Numerical technique for integro-differential equations arising in oscillating magnetic fields. Iran J Sci Technol A 38(4):473–479MathSciNet
11.
Zurück zum Zitat Assari P (2018) The thin plate spline collocation method for solving integrodifferential equations arisen from the charged particle motion in oscillating magnetic fields. Eng Comput 34:1706–1726 Assari P (2018) The thin plate spline collocation method for solving integrodifferential equations arisen from the charged particle motion in oscillating magnetic fields. Eng Comput 34:1706–1726
12.
Zurück zum Zitat Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Mediterr J Math 15:1–21MATH Assari P, Dehghan M (2018) Solving a class of nonlinear boundary integral equations based on the meshless local discrete Galerkin (MLDG) method. Mediterr J Math 15:1–21MATH
13.
Zurück zum Zitat Drozdov AD, Gil MI (1996) Stability of a linear integro-differential equation with periodic coefficients. Q Appl Math 54(4):609–624MathSciNetMATH Drozdov AD, Gil MI (1996) Stability of a linear integro-differential equation with periodic coefficients. Q Appl Math 54(4):609–624MathSciNetMATH
14.
Zurück zum Zitat Hardy RL (2006) Hardy, multiquadric equations of topography and other irregular surfaces. J Geophys Res 176(8):1905–1915 Hardy RL (2006) Hardy, multiquadric equations of topography and other irregular surfaces. J Geophys Res 176(8):1905–1915
15.
Zurück zum Zitat Fu Z, Chen W, Chen CS (2014) Recent advances in radial basis function collocation methods. Springer, New YorkMATH Fu Z, Chen W, Chen CS (2014) Recent advances in radial basis function collocation methods. Springer, New YorkMATH
16.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-I. Comput Math Appl 19:127–145MathSciNetMATH Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-I. Comput Math Appl 19:127–145MathSciNetMATH
17.
Zurück zum Zitat Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-II. Comput Math Appl 19:147–161MathSciNetMATH Kansa EJ (1990) Multiquadrics-A scattered data approximation scheme with applications to computational fluid dynamics-II. Comput Math Appl 19:147–161MathSciNetMATH
18.
Zurück zum Zitat Fu Z, Reutskiy S, Sun H, Ma J, Khan MA (2019) A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl Math Lett 94:105–111MathSciNetMATH Fu Z, Reutskiy S, Sun H, Ma J, Khan MA (2019) A robust kernel-based solver for variable-order time fractional PDEs under 2D/3D irregular domains. Appl Math Lett 94:105–111MathSciNetMATH
19.
Zurück zum Zitat Fu Z, Xi Q, Chen W, Cheng AH-D (2018) A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput Math Appl 76(4):760–773MathSciNetMATH Fu Z, Xi Q, Chen W, Cheng AH-D (2018) A boundary-type meshless solver for transient heat conduction analysis of slender functionally graded materials with exponential variations. Comput Math Appl 76(4):760–773MathSciNetMATH
20.
Zurück zum Zitat Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH Wendland H (2005) Scattered data approximation. Cambridge University Press, New YorkMATH
21.
Zurück zum Zitat Lee CK, Liu X, Fan SC (2003) Local multiquadric approximation for solving boundary value problems. Comput Mech 30(5–6):396–409MathSciNetMATH Lee CK, Liu X, Fan SC (2003) Local multiquadric approximation for solving boundary value problems. Comput Mech 30(5–6):396–409MathSciNetMATH
22.
Zurück zum Zitat Sarler B, Vertnik R (2006) Meshfree explicit local radial basis function collocation method for diffusion problems. Comput Math Appl 51(8):1269–1282MathSciNetMATH Sarler B, Vertnik R (2006) Meshfree explicit local radial basis function collocation method for diffusion problems. Comput Math Appl 51(8):1269–1282MathSciNetMATH
23.
Zurück zum Zitat Sarra SA (2012) A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. Appl Math Comput 218(19):9853–9865MathSciNetMATH Sarra SA (2012) A local radial basis function method for advection-diffusion-reaction equations on complexly shaped domains. Appl Math Comput 218(19):9853–9865MathSciNetMATH
24.
Zurück zum Zitat Vertnik R, Sarler B (2006) Meshless local radial basis function collocation method for convective–diffusive solid–liquid phase change problems. Int J Numer Methods Heat Fluid Flow 16(5):617–640MathSciNetMATH Vertnik R, Sarler B (2006) Meshless local radial basis function collocation method for convective–diffusive solid–liquid phase change problems. Int J Numer Methods Heat Fluid Flow 16(5):617–640MathSciNetMATH
25.
Zurück zum Zitat Kosec G, Sarler B (2013) Solution of a low prandtl number natural convection benchmark by a local meshless method. Int J Numer Methods Heat Fluid Flow 23(1):189–204MathSciNetMATH Kosec G, Sarler B (2013) Solution of a low prandtl number natural convection benchmark by a local meshless method. Int J Numer Methods Heat Fluid Flow 23(1):189–204MathSciNetMATH
26.
Zurück zum Zitat Mramor K, Vertnik R, Sarler B (2013) Simulation of natural convection influenced by magnetic field with explicit local radial basis function collocation method. CMES Comput Model Eng Sci 92(4):327–352MathSciNetMATH Mramor K, Vertnik R, Sarler B (2013) Simulation of natural convection influenced by magnetic field with explicit local radial basis function collocation method. CMES Comput Model Eng Sci 92(4):327–352MathSciNetMATH
27.
Zurück zum Zitat Hon Y, Sarler B, Yun D (2015) Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface. Eng Anal Bound Elem 57:2–8MathSciNetMATH Hon Y, Sarler B, Yun D (2015) Local radial basis function collocation method for solving thermo-driven fluid-flow problems with free surface. Eng Anal Bound Elem 57:2–8MathSciNetMATH
28.
Zurück zum Zitat Siraj-Ul-Islam, Vertnik R, Sarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetMATH Siraj-Ul-Islam, Vertnik R, Sarler B (2013) Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations. Appl Numer Math 67:136–151MathSciNetMATH
29.
Zurück zum Zitat Wang B (2015) A local meshless method based on moving least squares and local radial basis functions. Eng Anal Bound Elem 50:395–401MathSciNetMATH Wang B (2015) A local meshless method based on moving least squares and local radial basis functions. Eng Anal Bound Elem 50:395–401MathSciNetMATH
30.
Zurück zum Zitat Siraj ul Islam, Sarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled burgers’ equations. Appl Math Model 36(3):1148–1160MathSciNetMATH Siraj ul Islam, Sarler B, Vertnik R, Kosec G (2012) Radial basis function collocation method for the numerical solution of the two-dimensional transient nonlinear coupled burgers’ equations. Appl Math Model 36(3):1148–1160MathSciNetMATH
31.
Zurück zum Zitat Yun DF, Hon YC (2016) Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. Eng Anal Bound Elem 67:63–80MathSciNetMATH Yun DF, Hon YC (2016) Improved localized radial basis function collocation method for multi-dimensional convection-dominated problems. Eng Anal Bound Elem 67:63–80MathSciNetMATH
32.
Zurück zum Zitat Shu C, Ding H, Yeo KS (2003) Local radial basis funcion-based differential quadrature method and its application to solve two-dimensional incompressible navier–stokes equations. Comput Methods Appl Mech Eng 192(7–8):941–954MATH Shu C, Ding H, Yeo KS (2003) Local radial basis funcion-based differential quadrature method and its application to solve two-dimensional incompressible navier–stokes equations. Comput Methods Appl Mech Eng 192(7–8):941–954MATH
33.
Zurück zum Zitat Yao G, Sarler B, Chen CS (2011) A comparison of three explicit local meshless methods using radial basis functions. Eng Anal Bound Elem 35(3):600–609MathSciNetMATH Yao G, Sarler B, Chen CS (2011) A comparison of three explicit local meshless methods using radial basis functions. Eng Anal Bound Elem 35(3):600–609MathSciNetMATH
34.
Zurück zum Zitat Yao G, Duo J, Chen CS, Shen LH (2015) Implicit local radial basis function interpolations based on function values. Appl Math Comput 265:91–102MathSciNetMATH Yao G, Duo J, Chen CS, Shen LH (2015) Implicit local radial basis function interpolations based on function values. Appl Math Comput 265:91–102MathSciNetMATH
35.
Zurück zum Zitat Dehghan M, Nikpour A (2013) Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl Math Model 37(18–19):8578–8599MathSciNetMATH Dehghan M, Nikpour A (2013) Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method. Appl Math Model 37(18–19):8578–8599MathSciNetMATH
36.
Zurück zum Zitat Sun J, Yi H, Tan H (2016) Local radial basis function meshless scheme for vector radiative transfer in participating media with randomly oriented axisymmetric particles. Appl Opt 55(6):1232–1240 Sun J, Yi H, Tan H (2016) Local radial basis function meshless scheme for vector radiative transfer in participating media with randomly oriented axisymmetric particles. Appl Opt 55(6):1232–1240
37.
Zurück zum Zitat Mavric B, Sarler B (2015) Local radial basis function collocation method for linear thermoelasticity in two dimensions. Int J Numer Methods Heat Fluid 25(6):1488–1510MathSciNetMATH Mavric B, Sarler B (2015) Local radial basis function collocation method for linear thermoelasticity in two dimensions. Int J Numer Methods Heat Fluid 25(6):1488–1510MathSciNetMATH
38.
Zurück zum Zitat Dehghan M, Abbaszadeh M (2017) The meshless local collocation method for solving multi-dimensional Cahn–Hilliard, swift-Hohenberg and phase field crystal equations. Eng Anal Bound Elem 78:49–64MathSciNetMATH Dehghan M, Abbaszadeh M (2017) The meshless local collocation method for solving multi-dimensional Cahn–Hilliard, swift-Hohenberg and phase field crystal equations. Eng Anal Bound Elem 78:49–64MathSciNetMATH
40.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92MathSciNetMATH Assari P, Adibi H, Dehghan M (2013) A meshless method for solving nonlinear two-dimensional integral equations of the second kind on non-rectangular domains using radial basis functions with error analysis. J Comput Appl Math 239(1):72–92MathSciNetMATH
41.
Zurück zum Zitat Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:1–23MATH Assari P, Dehghan M (2017) A meshless method for the numerical solution of nonlinear weakly singular integral equations using radial basis functions. Eur Phys J Plus 132:1–23MATH
42.
Zurück zum Zitat Assari P, Dehghan M (2017) A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Appl Math Comput 315:424–444MathSciNetMATH Assari P, Dehghan M (2017) A meshless discrete collocation method for the numerical solution of singular-logarithmic boundary integral equations utilizing radial basis functions. Appl Math Comput 315:424–444MathSciNetMATH
43.
Zurück zum Zitat Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93MathSciNetMATH Assari P, Adibi H, Dehghan M (2014) The numerical solution of weakly singular integral equations based on the meshless product integration (MPI) method with error analysis. Appl Numer Math 81:76–93MathSciNetMATH
44.
Zurück zum Zitat Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262MathSciNetMATH Mirzaei D, Dehghan M (2010) A meshless based method for solution of integral equations. Appl Numer Math 60(3):245–262MathSciNetMATH
45.
Zurück zum Zitat Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377MathSciNetMATH Dehghan M, Salehi R (2012) The numerical solution of the non-linear integro-differential equations based on the meshless method. J Comput Appl Math 236(9):2367–2377MathSciNetMATH
46.
Zurück zum Zitat Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256MathSciNetMATH Li X (2011) Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl Numer Math 61(12):1237–1256MathSciNetMATH
47.
Zurück zum Zitat Li X, Zhu J (2009) A meshless Galerkin method for stokes problems using boundary integral equations. Comput Methods Appl Mech Eng 198:2874–2885MathSciNetMATH Li X, Zhu J (2009) A meshless Galerkin method for stokes problems using boundary integral equations. Comput Methods Appl Mech Eng 198:2874–2885MathSciNetMATH
48.
Zurück zum Zitat Fu Z, Chen W, Ling L (2015) Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng Anal Bound Elem 57:37–46MathSciNetMATH Fu Z, Chen W, Ling L (2015) Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng Anal Bound Elem 57:37–46MathSciNetMATH
49.
Zurück zum Zitat Fu Z, Chen W, Yang H (2013) Boundary particle method for laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66MathSciNetMATH Fu Z, Chen W, Yang H (2013) Boundary particle method for laplace transformed time fractional diffusion equations. J Comput Phys 235:52–66MathSciNetMATH
50.
Zurück zum Zitat Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing Kernel Hilbert space method. Appl Math Comput 219(17):8938–8948MathSciNetMATH Arqub OA, Al-Smadi M, Shawagfeh N (2013) Solving Fredholm integro-differential equations using reproducing Kernel Hilbert space method. Appl Math Comput 219(17):8938–8948MathSciNetMATH
51.
Zurück zum Zitat Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243(15):911–922MathSciNetMATH Arqub OA, Al-Smadi M (2014) Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl Math Comput 243(15):911–922MathSciNetMATH
52.
Zurück zum Zitat Shawagfeh N, Arqub OA, Momani SM (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762MathSciNetMATH Shawagfeh N, Arqub OA, Momani SM (2014) Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. J Comput Anal Appl 16(4):750–762MathSciNetMATH
53.
Zurück zum Zitat Halliday D, Resnick R, Walker J (1997) Fundamentals of physics. Willey, HobokenMATH Halliday D, Resnick R, Walker J (1997) Fundamentals of physics. Willey, HobokenMATH
54.
Zurück zum Zitat Harrington RF (2003) Introduction to electromagnetic engineering. Courier Corporation Harrington RF (2003) Introduction to electromagnetic engineering. Courier Corporation
55.
Zurück zum Zitat Sadiku MNO (2007) Elements of electromagnetics. Oxford University Press, Oxford Sadiku MNO (2007) Elements of electromagnetics. Oxford University Press, Oxford
56.
Zurück zum Zitat Bojeldain AA (1991) On the numerical solving of nonlinear Volterra integro-differential equations. Ann Univ Sci Bp Sect Comput 11:105–125MathSciNetMATH Bojeldain AA (1991) On the numerical solving of nonlinear Volterra integro-differential equations. Ann Univ Sci Bp Sect Comput 11:105–125MathSciNetMATH
57.
Zurück zum Zitat Fu Z, Chen W, Wen P, Zhang C (2018) Singular boundary method for wave propagation analysis in periodic structures. J Sound Vib 425:170–188 Fu Z, Chen W, Wen P, Zhang C (2018) Singular boundary method for wave propagation analysis in periodic structures. J Sound Vib 425:170–188
58.
Zurück zum Zitat Fasshauer GE (2005) Meshfree methods. In Handbook of theoretical and computational nanotechnology, American Scientific Publishers Fasshauer GE (2005) Meshfree methods. In Handbook of theoretical and computational nanotechnology, American Scientific Publishers
59.
Zurück zum Zitat Assari P, Asadi-Mehregan F (2019) Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int J Numer Model 32(1):1–23MATH Assari P, Asadi-Mehregan F (2019) Local multiquadric scheme for solving two-dimensional weakly singular Hammerstein integral equations. Int J Numer Model 32(1):1–23MATH
60.
Zurück zum Zitat Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeMATH Buhmann MD (2003) Radial basis functions: theory and implementations. Cambridge University Press, CambridgeMATH
61.
Zurück zum Zitat Quarteroni A, Sacco R, Saleri F (2008) Numerical analysis for electromagnetic integral equations. Artech House, BostonMATH Quarteroni A, Sacco R, Saleri F (2008) Numerical analysis for electromagnetic integral equations. Artech House, BostonMATH
62.
Zurück zum Zitat Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeMATH Atkinson KE (1997) The numerical solution of integral equations of the second kind. Cambridge University Press, CambridgeMATH
63.
Zurück zum Zitat Zhang S, Lin Y, Rao M (2000) Numerical solutions for second-kind Volterra integral equations by Galerkin methods. Appl Math 45(1):19–39MathSciNetMATH Zhang S, Lin Y, Rao M (2000) Numerical solutions for second-kind Volterra integral equations by Galerkin methods. Appl Math 45(1):19–39MathSciNetMATH
64.
Zurück zum Zitat Arqub OA, Maayah B (2018) Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 117:117–124MathSciNetMATH Arqub OA, Maayah B (2018) Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana–Baleanu fractional operator. Chaos Solitons Fractals 117:117–124MathSciNetMATH
65.
Zurück zum Zitat Arqub OA, Al-Smadi M (2018) Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painleve equations in Hilbert space. Chaos Solitons Fractals 117:161–167MathSciNetMATH Arqub OA, Al-Smadi M (2018) Atangana–Baleanu fractional approach to the solutions of Bagley–Torvik and Painleve equations in Hilbert space. Chaos Solitons Fractals 117:161–167MathSciNetMATH
66.
Zurück zum Zitat Arqub OA, Maayah B (2018) Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer Methods Partial Differ Equ 34:1577–1597MathSciNetMATH Arqub OA, Maayah B (2018) Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer Methods Partial Differ Equ 34:1577–1597MathSciNetMATH
67.
Zurück zum Zitat Arqub OA (2018) Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer Methods Partial Differ Equ 34:1759–1780MathSciNetMATH Arqub OA (2018) Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer Methods Partial Differ Equ 34:1759–1780MathSciNetMATH
68.
Zurück zum Zitat Arqub OA (2019) Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space. Fundam Inform 166:87–110MathSciNetMATH Arqub OA (2019) Application of residual power series method for the solution of time-fractional Schrodinger equations in one-dimensional space. Fundam Inform 166:87–110MathSciNetMATH
69.
Zurück zum Zitat Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753MathSciNetMATH Kaneko H, Xu Y (1994) Gauss-type quadratures for weakly singular integrals and their application to Fredholm integral equations of the second kind. Math Comput 62(206):739–753MathSciNetMATH
Metadaten
Titel
The approximate solution of charged particle motion equations in oscillating magnetic fields using the local multiquadrics collocation method
verfasst von
Pouria Assari
Fatemeh Asadi-Mehregan
Publikationsdatum
28.06.2019
Verlag
Springer London
Erschienen in
Engineering with Computers / Ausgabe 1/2021
Print ISSN: 0177-0667
Elektronische ISSN: 1435-5663
DOI
https://doi.org/10.1007/s00366-019-00807-z

Weitere Artikel der Ausgabe 1/2021

Engineering with Computers 1/2021 Zur Ausgabe

Neuer Inhalt