Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 5/2017

02.03.2017 | Original Paper

The common, different and unique effects of metallic engineered nanomaterials: an analytic perspective

verfasst von: Thabet Tolaymat, Ash Genaidy, Wael Abdelraheem, Dionysios Dionysiou, Amro El Badawy

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 5/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

From regulatory perspectives, there has been a debate in the scientific literature as to whether or not metallic engineered nanomaterials (ENMs) should be treated as new chemicals in terms of their toxic effects upon biological species. This debate has prompted us to examine the scientific evidence to validate those paradoxical claims. Investigations covering the effects of metallic ENMs and metal-based ions in the same study were included in this research. The findings reported herein suggest that the different arguments are valid if a wider perspective takes into account the common, different and unique effects of metallic nanoparticles versus metal-based ions. This perspective has been evident from investigations of aquatic (lower organisms such as Daphnia magna and higher organisms like zebra fish) and other organisms (e.g., microbes, nematodes, animal and human cells). It is suggested that the regulation of metallic nanomaterial-based products be transformed to a tier-based approach as a function of the common, different and unique effects to manage the complexity brought into light due to the infinite combinations of the particle physical–chemical properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM (2013) In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7:30–36. doi:10.3109/17435390.2011.626538 CrossRef Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM (2013) In vitro cytotoxicity of silver nanoparticles on osteoblasts and osteoclasts at antibacterial concentrations. Nanotoxicology 7:30–36. doi:10.​3109/​17435390.​2011.​626538 CrossRef
Zurück zum Zitat Allen HJ et al (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750. doi:10.1002/etc.329 CrossRef Allen HJ et al (2010) Effects from filtration, capping agents, and presence/absence of food on the toxicity of silver nanoparticles to Daphnia magna. Environ Toxicol Chem 29:2742–2750. doi:10.​1002/​etc.​329 CrossRef
Zurück zum Zitat Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:1–9. doi:10.1155/2012/293784 CrossRef Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:1–9. doi:10.​1155/​2012/​293784 CrossRef
Zurück zum Zitat Bouwmeester H et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103. doi:10.1021/nn2007145 CrossRef Bouwmeester H et al (2011) Characterization of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano 5:4091–4103. doi:10.​1021/​nn2007145 CrossRef
Zurück zum Zitat Bowman CR, Bailey FC, Elrod-Erickson M, Neigh AM, Otter RR (2012) Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system. Environ Toxicol Chem 31:1793–1800. doi:10.1002/etc.1881 CrossRef Bowman CR, Bailey FC, Elrod-Erickson M, Neigh AM, Otter RR (2012) Effects of silver nanoparticles on zebrafish (Danio rerio) and Escherichia coli (ATCC 25922): a comparison of toxicity based on total surface area versus mass concentration of particles in a model eukaryotic and prokaryotic system. Environ Toxicol Chem 31:1793–1800. doi:10.​1002/​etc.​1881 CrossRef
Zurück zum Zitat Buffet P-E et al (2014) A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Sci Total Environ 470–471:1151–1159. doi:10.1016/j.scitotenv.2013.10.114 CrossRef Buffet P-E et al (2014) A marine mesocosm study on the environmental fate of silver nanoparticles and toxicity effects on two endobenthic species: the ragworm Hediste diversicolor and the bivalve mollusc Scrobicularia plana. Sci Total Environ 470–471:1151–1159. doi:10.​1016/​j.​scitotenv.​2013.​10.​114 CrossRef
Zurück zum Zitat Burchardt AD et al (2012) Effects of silver nanoparticles in diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp. Environ Sci Technol 46:11336–11344. doi:10.1021/es300989e CrossRef Burchardt AD et al (2012) Effects of silver nanoparticles in diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp. Environ Sci Technol 46:11336–11344. doi:10.​1021/​es300989e CrossRef
Zurück zum Zitat Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48:761–769. doi:10.1021/es403969x CrossRef Chambers BA, Afrooz ARMN, Bae S, Aich N, Katz L, Saleh NB, Kirisits MJ (2014) Effects of chloride and ionic strength on physical morphology, dissolution, and bacterial toxicity of silver nanoparticles. Environ Sci Technol 48:761–769. doi:10.​1021/​es403969x CrossRef
Zurück zum Zitat Chen P-J, Tan S-W, Wu W-L (2012) Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environ Sci Technol 46:8431–8439. doi:10.1021/es3006783 CrossRef Chen P-J, Tan S-W, Wu W-L (2012) Stabilization or oxidation of nanoscale zerovalent iron at environmentally relevant exposure changes bioavailability and toxicity in medaka fish. Environ Sci Technol 46:8431–8439. doi:10.​1021/​es3006783 CrossRef
Zurück zum Zitat Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. doi:10.1021/es703238h CrossRef Choi O, Hu Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ Sci Technol 42:4583–4588. doi:10.​1021/​es703238h CrossRef
Zurück zum Zitat Costanza J, El Badawy AM, Tolaymat TM (2011) Comment on “120 years of nanosilver history: implications for policy makers”. Environ Sci Technol 45:7591–7592. doi:10.1021/es200666n CrossRef Costanza J, El Badawy AM, Tolaymat TM (2011) Comment on “120 years of nanosilver history: implications for policy makers”. Environ Sci Technol 45:7591–7592. doi:10.​1021/​es200666n CrossRef
Zurück zum Zitat Cozzari M, Elia AC, Pacini N, Smith BD, Boyle D, Rainbow PS, Khan FR (2015) Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano- and bulk-sized silver. Environ Pollut 198:32–40. doi:10.1016/j.envpol.2014.12.015 CrossRef Cozzari M, Elia AC, Pacini N, Smith BD, Boyle D, Rainbow PS, Khan FR (2015) Bioaccumulation and oxidative stress responses measured in the estuarine ragworm (Nereis diversicolor) exposed to dissolved, nano- and bulk-sized silver. Environ Pollut 198:32–40. doi:10.​1016/​j.​envpol.​2014.​12.​015 CrossRef
Zurück zum Zitat Croteau M-N, Misra SK, Luoma SN, Valsami-Jones E (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45:6600–6607. doi:10.1021/es200880c CrossRef Croteau M-N, Misra SK, Luoma SN, Valsami-Jones E (2011) Silver bioaccumulation dynamics in a freshwater invertebrate after aqueous and dietary exposures to nanosized and ionic Ag. Environ Sci Technol 45:6600–6607. doi:10.​1021/​es200880c CrossRef
Zurück zum Zitat Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212. doi:10.1016/j.chroma.2011.02.074 CrossRef Delay M, Dolt T, Woellhaf A, Sembritzki R, Frimmel FH (2011) Interactions and stability of silver nanoparticles in the aqueous phase: influence of natural organic matter (NOM) and ionic strength. J Chromatogr A 1218:4206–4212. doi:10.​1016/​j.​chroma.​2011.​02.​074 CrossRef
Zurück zum Zitat Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754. doi:10.1021/cr300288v CrossRef Eckhardt S, Brunetto PS, Gagnon J, Priebe M, Giese B, Fromm KM (2013) Nanobio silver: its interactions with peptides and bacteria, and its uses in medicine. Chem Rev 113:4708–4754. doi:10.​1021/​cr300288v CrossRef
Zurück zum Zitat Eom H-J, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342. doi:10.1021/es1020668 CrossRef Eom H-J, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342. doi:10.​1021/​es1020668 CrossRef
Zurück zum Zitat Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101:117–125. doi:10.1016/j.aquatox.2010.09.010 CrossRef Farkas J, Christian P, Gallego-Urrea JA, Roos N, Hassellöv M, Tollefsen KE, Thomas KV (2011) Uptake and effects of manufactured silver nanoparticles in rainbow trout (Oncorhynchus mykiss) gill cells. Aquat Toxicol 101:117–125. doi:10.​1016/​j.​aquatox.​2010.​09.​010 CrossRef
Zurück zum Zitat Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162. doi:10.1016/j.toxlet.2009.07.009 CrossRef Foldbjerg R, Olesen P, Hougaard M, Dang DA, Hoffmann HJ, Autrup H (2009) PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol Lett 190:156–162. doi:10.​1016/​j.​toxlet.​2009.​07.​009 CrossRef
Zurück zum Zitat Gil-Allué C, Schirmer K, Tlili A, Gessner MO, Behra R (2015) Silver nanoparticle effects on stream periphyton during short-term exposures. Environ Sci Technol 49:1165–1172. doi:10.1021/es5050166 CrossRef Gil-Allué C, Schirmer K, Tlili A, Gessner MO, Behra R (2015) Silver nanoparticle effects on stream periphyton during short-term exposures. Environ Sci Technol 49:1165–1172. doi:10.​1021/​es5050166 CrossRef
Zurück zum Zitat Gomes SIL, Novais SC, Scott-Fordsmand JJ, De Coen W, Soares AMVM, Amorim MJB (2012) Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): differential gene expression through microarray analysis. Comp Biochem Physiol C Toxicol Pharmacol 155:219–227. doi:10.1016/j.cbpc.2011.08.008 CrossRef Gomes SIL, Novais SC, Scott-Fordsmand JJ, De Coen W, Soares AMVM, Amorim MJB (2012) Effect of Cu-nanoparticles versus Cu-salt in Enchytraeus albidus (Oligochaeta): differential gene expression through microarray analysis. Comp Biochem Physiol C Toxicol Pharmacol 155:219–227. doi:10.​1016/​j.​cbpc.​2011.​08.​008 CrossRef
Zurück zum Zitat Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2008) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415. doi:10.1093/toxsci/kfn256 CrossRef Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2008) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415. doi:10.​1093/​toxsci/​kfn256 CrossRef
Zurück zum Zitat Hoheisel SM, Diamond S, Mount D (2012) Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ Toxicol Chem 31:2557–2563. doi:10.1002/etc.1978 CrossRef Hoheisel SM, Diamond S, Mount D (2012) Comparison of nanosilver and ionic silver toxicity in Daphnia magna and Pimephales promelas. Environ Toxicol Chem 31:2557–2563. doi:10.​1002/​etc.​1978 CrossRef
Zurück zum Zitat Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051. doi:10.1021/es900754q CrossRef Kawata K, Osawa M, Okabe S (2009) In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol 43:6046–6051. doi:10.​1021/​es900754q CrossRef
Zurück zum Zitat Khan FR et al (2012) Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver. Environ Sci Technol 46:7621–7628. doi:10.1021/es301253s CrossRef Khan FR et al (2012) Bioaccumulation dynamics and modeling in an estuarine invertebrate following aqueous exposure to nanosized and dissolved silver. Environ Sci Technol 46:7621–7628. doi:10.​1021/​es301253s CrossRef
Zurück zum Zitat Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V, Fernandes TF (2015) Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol 49:4389–4397. doi:10.1021/es506124x CrossRef Khan FR, Paul KB, Dybowska AD, Valsami-Jones E, Lead JR, Stone V, Fernandes TF (2015) Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol 49:4389–4397. doi:10.​1021/​es506124x CrossRef
Zurück zum Zitat Kim J, Kim S, Lee S (2011a) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5:208–214. doi:10.3109/17435390.2010.508137 CrossRef Kim J, Kim S, Lee S (2011a) Differentiation of the toxicities of silver nanoparticles and silver ions to the Japanese medaka (Oryzias latipes) and the cladoceran Daphnia magna. Nanotoxicology 5:208–214. doi:10.​3109/​17435390.​2010.​508137 CrossRef
Zurück zum Zitat Kim JY, Lee C, Love DC, Sedlak DL, Yoon J, Nelson KL (2011b) Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environ Sci Technol 45:6978–6984. doi:10.1021/es201345y CrossRef Kim JY, Lee C, Love DC, Sedlak DL, Yoon J, Nelson KL (2011b) Inactivation of MS2 coliphage by ferrous ion and zero-valent iron nanoparticles. Environ Sci Technol 45:6978–6984. doi:10.​1021/​es201345y CrossRef
Zurück zum Zitat Leclerc S, Wilkinson KJ (2014) Bioaccumulation of Nanosilver by Chlamydomonas reinhardtii—nanoparticle or the free ion? Environ Sci Technol 48:358–364. doi:10.1021/es404037z CrossRef Leclerc S, Wilkinson KJ (2014) Bioaccumulation of Nanosilver by Chlamydomonas reinhardtii—nanoparticle or the free ion? Environ Sci Technol 48:358–364. doi:10.​1021/​es404037z CrossRef
Zurück zum Zitat Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432. doi:10.1021/cr1003166 CrossRef Mahmoudi M, Azadmanesh K, Shokrgozar MA, Journeay WS, Laurent S (2011) Effect of nanoparticles on the cell life cycle. Chem Rev 111:3407–3432. doi:10.​1021/​cr1003166 CrossRef
Zurück zum Zitat Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ (2013) Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32:2356–2364. doi:10.1002/etc.2300 CrossRef Newton KM, Puppala HL, Kitchens CL, Colvin VL, Klaine SJ (2013) Silver nanoparticle toxicity to Daphnia magna is a function of dissolved silver concentration. Environ Toxicol Chem 32:2356–2364. doi:10.​1002/​etc.​2300 CrossRef
Zurück zum Zitat OECD (2012) Important issues on risk assessment of manufactured nanomaterials (2012. Report No. 33, ENV/JM/MONO(2012) 8) vol Report No. 33, ENV/JM/MONO(2012) 8. Paris OECD (2012) Important issues on risk assessment of manufactured nanomaterials (2012. Report No. 33, ENV/JM/MONO(2012) 8) vol Report No. 33, ENV/JM/MONO(2012) 8. Paris
Zurück zum Zitat Piccapietra F, Allué CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7397. doi:10.1021/es300734m CrossRef Piccapietra F, Allué CG, Sigg L, Behra R (2012) Intracellular silver accumulation in Chlamydomonas reinhardtii upon exposure to carbonate coated silver nanoparticles and silver nitrate. Environ Sci Technol 46:7390–7397. doi:10.​1021/​es300734m CrossRef
Zurück zum Zitat Poynton HC et al (2012) Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46:6288–6296. doi:10.1021/es3001618 CrossRef Poynton HC et al (2012) Toxicogenomic responses of nanotoxicity in Daphnia magna exposed to silver nitrate and coated silver nanoparticles. Environ Sci Technol 46:6288–6296. doi:10.​1021/​es3001618 CrossRef
Zurück zum Zitat Schultz AG, Ong KJ, MacCormack T, Ma G, Veinot JGC, Goss GG (2012) Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 46:10295–10301. doi:10.1021/es3017717 CrossRef Schultz AG, Ong KJ, MacCormack T, Ma G, Veinot JGC, Goss GG (2012) Silver nanoparticles inhibit sodium uptake in juvenile rainbow trout (Oncorhynchus mykiss). Environ Sci Technol 46:10295–10301. doi:10.​1021/​es3017717 CrossRef
Zurück zum Zitat Soenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–2135. doi:10.1021/cr400714j CrossRef Soenen SJ, Parak WJ, Rejman J, Manshian B (2015) (Intra)cellular stability of inorganic nanoparticles: effects on cytotoxicity, particle functionality, and biomedical applications. Chem Rev 115:2109–2135. doi:10.​1021/​cr400714j CrossRef
Zurück zum Zitat Tolaymat T, El Badawy A, Sequeira R, Genaidy A (2015) An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. J Hazard Mater 298:270–281CrossRef Tolaymat T, El Badawy A, Sequeira R, Genaidy A (2015) An integrated science-based methodology to assess potential risks and implications of engineered nanomaterials. J Hazard Mater 298:270–281CrossRef
Zurück zum Zitat Wang J, Wang W-X (2014) Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma). Environ Sci Technol 48:8152–8161. doi:10.1021/es500655z CrossRef Wang J, Wang W-X (2014) Low bioavailability of silver nanoparticles presents trophic toxicity to marine medaka (Oryzias melastigma). Environ Sci Technol 48:8152–8161. doi:10.​1021/​es500655z CrossRef
Zurück zum Zitat Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008. doi:10.1021/es201918f CrossRef Xiu Z-M, Ma J, Alvarez PJJ (2011) Differential effect of common ligands and molecular oxygen on antimicrobial activity of silver nanoparticles versus silver ions. Environ Sci Technol 45:9003–9008. doi:10.​1021/​es201918f CrossRef
Zurück zum Zitat Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.1021/nl301934w CrossRef Xiu Z, Zhang Q, Puppala HL, Colvin VL, Alvarez PJJ (2012) Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett 12:4271–4275. doi:10.​1021/​nl301934w CrossRef
Zurück zum Zitat Yang X et al (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48:3486–3495. doi:10.1021/es404444n CrossRef Yang X et al (2014) Silver nanoparticle behavior, uptake, and toxicity in Caenorhabditis elegans: effects of natural organic matter. Environ Sci Technol 48:3486–3495. doi:10.​1021/​es404444n CrossRef
Zurück zum Zitat Zhao X, Ibuki Y (2015) Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light. Environ Sci Technol 49:5003–5012. doi:10.1021/acs.est.5b00542 CrossRef Zhao X, Ibuki Y (2015) Evaluating the toxicity of silver nanoparticles by detecting phosphorylation of histone H3 in combination with flow cytometry side-scattered light. Environ Sci Technol 49:5003–5012. doi:10.​1021/​acs.​est.​5b00542 CrossRef
Zurück zum Zitat Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631. doi:10.1021/ar300031y CrossRef Zhu M, Nie G, Meng H, Xia T, Nel A, Zhao Y (2013) Physicochemical properties determine nanomaterial cellular uptake, transport, and fate. Acc Chem Res 46:622–631. doi:10.​1021/​ar300031y CrossRef
Metadaten
Titel
The common, different and unique effects of metallic engineered nanomaterials: an analytic perspective
verfasst von
Thabet Tolaymat
Ash Genaidy
Wael Abdelraheem
Dionysios Dionysiou
Amro El Badawy
Publikationsdatum
02.03.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 5/2017
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-017-1345-x

Weitere Artikel der Ausgabe 5/2017

Clean Technologies and Environmental Policy 5/2017 Zur Ausgabe