Skip to main content
Erschienen in: Computational Mechanics 4/2020

Open Access 30.07.2020 | Original Paper

The computational framework for continuum-kinematics-inspired peridynamics

verfasst von: A. Javili, S. Firooz, A. T. McBride, P. Steinmann

Erschienen in: Computational Mechanics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Peridynamics (PD) is a non-local continuum formulation. The original version of PD was restricted to bond-based interactions. Bond-based PD is geometrically exact and its kinematics are similar to classical continuum mechanics (CCM). However, it cannot capture the Poisson effect correctly. This shortcoming was addressed via state-based PD, but the kinematics are not accurately preserved. Continuum-kinematics-inspired peridynamics (CPD) provides a geometrically exact framework whose underlying kinematics coincide with that of CCM and captures the Poisson effect correctly. In CPD, one distinguishes between one-, two- and three-neighbour interactions. One-neighbour interactions are equivalent to the bond-based interactions of the original PD formalism. However, two- and three-neighbour interactions are fundamentally different from state-based interactions as the basic elements of continuum kinematics are preserved precisely. The objective of this contribution is to elaborate on computational aspects of CPD and present detailed derivations that are essential for its implementation. Key features of the resulting computational CPD are elucidated via a series of numerical examples. These include three-dimensional problems at large deformations. The proposed strategy is robust and the quadratic rate of convergence associated with the Newton–Raphson scheme is observed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetMATHCrossRef Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209MathSciNetMATHCrossRef
2.
Zurück zum Zitat Dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928MathSciNetMATHCrossRef Dell’Isola F, Andreaus U, Placidi L (2015) At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: an underestimated and still topical contribution of Gabrio Piola. Math Mech Solids 20(8):887–928MathSciNetMATHCrossRef
3.
Zurück zum Zitat Dell’Isola F, Della Corte A, Giorgio I (2017) Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 22(4):1–21MathSciNetMATHCrossRef Dell’Isola F, Della Corte A, Giorgio I (2017) Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives. Math Mech Solids 22(4):1–21MathSciNetMATHCrossRef
4.
Zurück zum Zitat Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH Eringen AC (2002) Nonlocal continuum field theories. Springer, BerlinMATH
5.
Zurück zum Zitat Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135:117–131CrossRef Forest S (2009) Micromorphic approach for gradient elasticity, viscoplasticity, and damage. J Eng Mech 135:117–131CrossRef
6.
Zurück zum Zitat Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2):165–177MATHCrossRef Kilic B, Madenci E (2009) Prediction of crack paths in a quenched glass plate by using peridynamic theory. Int J Fract 156(2):165–177MATHCrossRef
7.
Zurück zum Zitat Foster J, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–688CrossRef Foster J, Silling SA, Chen W (2011) An energy based failure criterion for use with peridynamic states. Int J Multiscale Comput Eng 9(6):675–688CrossRef
8.
Zurück zum Zitat Silling SA, Weckner O, Askari E, Bobaru F (2010) Crack nucleation in a peridynamic solid. Int J Fract 162(1–2):219–227MATHCrossRef Silling SA, Weckner O, Askari E, Bobaru F (2010) Crack nucleation in a peridynamic solid. Int J Fract 162(1–2):219–227MATHCrossRef
9.
Zurück zum Zitat Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171(1):65–78MATHCrossRef Agwai A, Guven I, Madenci E (2011) Predicting crack propagation with peridynamics: a comparative study. Int J Fract 171(1):65–78MATHCrossRef
10.
Zurück zum Zitat Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22CrossRef Dipasquale D, Zaccariotto M, Galvanetto U (2014) Crack propagation with adaptive grid refinement in 2D peridynamics. Int J Fract 190(1–2):1–22CrossRef
11.
12.
Zurück zum Zitat Han F, Lubineau G, Azdoud Y (2016) Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure. J Mech Phys Solids 94:453–472MathSciNetCrossRef Han F, Lubineau G, Azdoud Y (2016) Adaptive coupling between damage mechanics and peridynamics: a route for objective simulation of material degradation up to complete failure. J Mech Phys Solids 94:453–472MathSciNetCrossRef
14.
Zurück zum Zitat De Meo D, Zhu N, Oterkus E (2016) Peridynamic modeling of granular fracture in polycrystalline materials. J Eng Mater Technol 138(4):041008CrossRef De Meo D, Zhu N, Oterkus E (2016) Peridynamic modeling of granular fracture in polycrystalline materials. J Eng Mater Technol 138(4):041008CrossRef
15.
Zurück zum Zitat Sun C, Huang Z (2016) Peridynamic simulation to impacting damage in composite laminate. Compos Struct 138:335–341CrossRef Sun C, Huang Z (2016) Peridynamic simulation to impacting damage in composite laminate. Compos Struct 138:335–341CrossRef
16.
Zurück zum Zitat Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23CrossRef Diyaroglu C, Oterkus E, Madenci E, Rabczuk T, Siddiq A (2016) Peridynamic modeling of composite laminates under explosive loading. Compos Struct 144:14–23CrossRef
18.
Zurück zum Zitat Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54(9):1811–1842MathSciNetMATHCrossRef Dayal K, Bhattacharya K (2006) Kinetics of phase transformations in the peridynamic formulation of continuum mechanics. J Mech Phys Solids 54(9):1811–1842MathSciNetMATHCrossRef
19.
Zurück zum Zitat Mikata Y (2012) Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int J Solids Struct 49(21):2887–2897CrossRef Mikata Y (2012) Analytical solutions of peristatic and peridynamic problems for a 1D infinite rod. Int J Solids Struct 49(21):2887–2897CrossRef
20.
Zurück zum Zitat Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250MathSciNetMATHCrossRef Breitenfeld MS, Geubelle PH, Weckner O, Silling SA (2014) Non-ordinary state-based peridynamic analysis of stationary crack problems. Comput Methods Appl Mech Eng 272:233–250MathSciNetMATHCrossRef
21.
Zurück zum Zitat Huang D, Lu G, Qiao P (2015) An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 94–95:111–122CrossRef Huang D, Lu G, Qiao P (2015) An improved peridynamic approach for quasi-static elastic deformation and brittle fracture analysis. Int J Mech Sci 94–95:111–122CrossRef
22.
Zurück zum Zitat Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219MathSciNetCrossRef Madenci E, Oterkus S (2016) Ordinary state-based peridynamics for plastic deformation according to von Mises yield criteria with isotropic hardening. J Mech Phys Solids 86:192–219MathSciNetCrossRef
23.
Zurück zum Zitat Gerstle W, Silling S, Read D, Tewary V, Lehoucq R (2008) Peridynamic simulation of electromigration. Comput Mater Contin 8(2):75–92 Gerstle W, Silling S, Read D, Tewary V, Lehoucq R (2008) Peridynamic simulation of electromigration. Comput Mater Contin 8(2):75–92
24.
Zurück zum Zitat Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53(19–20):4047–4059MATHCrossRef Bobaru F, Duangpanya M (2010) The peridynamic formulation for transient heat conduction. Int J Heat Mass Transf 53(19–20):4047–4059MATHCrossRef
27.
Zurück zum Zitat Oterkus S, Madenci E, Oterkus E (2017) Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Eng Geol 225:19–28MATHCrossRef Oterkus S, Madenci E, Oterkus E (2017) Fully coupled poroelastic peridynamic formulation for fluid-filled fractures. Eng Geol 225:19–28MATHCrossRef
28.
Zurück zum Zitat Bobaru F, Yang M, Alves F, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6):852–877MATHCrossRef Bobaru F, Yang M, Alves F, Silling SA, Askari E, Xu J (2009) Convergence, adaptive refinement, and scaling in 1D peridynamics. Int J Numer Methods Eng 77(6):852–877MATHCrossRef
29.
Zurück zum Zitat Shelke A, Banerjee S, Kundu T, Amjad U, Grill W (2011) Multi-scale damage state estimation in composites using nonlocal elastic kernel: an experimental validation. Int J Solids Struct 48(7–8):1219–1228MATHCrossRef Shelke A, Banerjee S, Kundu T, Amjad U, Grill W (2011) Multi-scale damage state estimation in composites using nonlocal elastic kernel: an experimental validation. Int J Solids Struct 48(7–8):1219–1228MATHCrossRef
30.
Zurück zum Zitat Rahman R, Foster JT (2014) Bridging the length scales through nonlocal hierarchical multiscale modeling scheme. Comput Mater Sci 92:401–415CrossRef Rahman R, Foster JT (2014) Bridging the length scales through nonlocal hierarchical multiscale modeling scheme. Comput Mater Sci 92:401–415CrossRef
32.
Zurück zum Zitat Ebrahimi S, Steigmann D, Komvopoulos K (2015) Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films. J Mech Mater Struct 10(5):559–572CrossRef Ebrahimi S, Steigmann D, Komvopoulos K (2015) Peridynamics analysis of the nanoscale friction and wear properties of amorphous carbon thin films. J Mech Mater Struct 10(5):559–572CrossRef
33.
Zurück zum Zitat Tong Q, Li S (2016) Multiscale coupling of molecular dynamics and peridynamics. J Mech Phys Solids 95:169–187MathSciNetCrossRef Tong Q, Li S (2016) Multiscale coupling of molecular dynamics and peridynamics. J Mech Phys Solids 95:169–187MathSciNetCrossRef
34.
Zurück zum Zitat Xu F, Gunzburger M, Burkardt J (2016) A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput Methods Appl Mech Eng 307:117–143MathSciNetMATHCrossRef Xu F, Gunzburger M, Burkardt J (2016) A multiscale method for nonlocal mechanics and diffusion and for the approximation of discontinuous functions. Comput Methods Appl Mech Eng 307:117–143MathSciNetMATHCrossRef
35.
Zurück zum Zitat Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497MathSciNetMATHCrossRef Zaccariotto M, Mudric T, Tomasi D, Shojaei A, Galvanetto U (2018) Coupling of FEM meshes with Peridynamic grids. Comput Methods Appl Mech Eng 330:471–497MathSciNetMATHCrossRef
36.
Zurück zum Zitat Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-linear Mech 40(2–3):395–409MATHCrossRef Silling SA, Bobaru F (2005) Peridynamic modeling of membranes and fibers. Int J Non-linear Mech 40(2–3):395–409MATHCrossRef
37.
Zurück zum Zitat O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51(18):3177–3183CrossRef O’Grady J, Foster J (2014) Peridynamic beams: a non-ordinary, state-based model. Int J Solids Struct 51(18):3177–3183CrossRef
38.
39.
Zurück zum Zitat Chowdhury SR, Roy P, Roy D, Reddy JN (2016) A peridynamic theory for linear elastic shells. Int J Solids Struct 84:110–132CrossRef Chowdhury SR, Roy P, Roy D, Reddy JN (2016) A peridynamic theory for linear elastic shells. Int J Solids Struct 84:110–132CrossRef
40.
Zurück zum Zitat Li H, Zhang H, Zheng Y, Zhang L (2016) A peridynamic model for the nonlinear static analysis of truss and tensegrity structures. Comput Mech 57(5):843–858MathSciNetMATHCrossRef Li H, Zhang H, Zheng Y, Zhang L (2016) A peridynamic model for the nonlinear static analysis of truss and tensegrity structures. Comput Mech 57(5):843–858MathSciNetMATHCrossRef
41.
42.
Zurück zum Zitat Sun S, Sundararaghavan V (2014) A peridynamic implementation of crystal plasticity. Int J Solids Struct 51(19):3350–3360CrossRef Sun S, Sundararaghavan V (2014) A peridynamic implementation of crystal plasticity. Int J Solids Struct 51(19):3350–3360CrossRef
43.
44.
Zurück zum Zitat Madenci E, Oterkus S (2017) Ordinary state-based peridynamics for thermoviscoelastic deformation. Eng Fract Mech 175:31–45CrossRef Madenci E, Oterkus S (2017) Ordinary state-based peridynamics for thermoviscoelastic deformation. Eng Fract Mech 175:31–45CrossRef
45.
Zurück zum Zitat Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57MathSciNetMATHCrossRef Silling SA (2017) Stability of peridynamic correspondence material models and their particle discretizations. Comput Methods Appl Mech Eng 322:42–57MathSciNetMATHCrossRef
46.
Zurück zum Zitat Chen Z, Bakenhus D, Bobaru F (2016) A constructive peridynamic kernel for elasticity. Comput Methods Appl Mech Eng 311:356–373MathSciNetMATHCrossRef Chen Z, Bakenhus D, Bobaru F (2016) A constructive peridynamic kernel for elasticity. Comput Methods Appl Mech Eng 311:356–373MathSciNetMATHCrossRef
47.
Zurück zum Zitat Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems. Comput Methods Appl Mech Eng 344:251–275MathSciNetMATHCrossRef Wang X, Kulkarni SS, Tabarraei A (2019) Concurrent coupling of peridynamics and classical elasticity for elastodynamic problems. Comput Methods Appl Mech Eng 344:251–275MathSciNetMATHCrossRef
48.
Zurück zum Zitat Pathrikar A, Rahaman MM, Roy D (2019) A thermodynamically consistent peridynamics model for visco-plasticity and damage. Comput Methods Appl Mech Eng 348:29–63MathSciNetMATHCrossRef Pathrikar A, Rahaman MM, Roy D (2019) A thermodynamically consistent peridynamics model for visco-plasticity and damage. Comput Methods Appl Mech Eng 348:29–63MathSciNetMATHCrossRef
50.
Zurück zum Zitat Lejeune E, Linder C (2017) Modeling tumor growth with peridynamics. Biomech Model Mechanobiol 16(4):1141–1157CrossRef Lejeune E, Linder C (2017) Modeling tumor growth with peridynamics. Biomech Model Mechanobiol 16(4):1141–1157CrossRef
51.
Zurück zum Zitat Zingales M (2011) Wave propagation in 1D elastic solids in presence of long-range central interactions. J Sound Vib 330(16):3973–3989CrossRef Zingales M (2011) Wave propagation in 1D elastic solids in presence of long-range central interactions. J Sound Vib 330(16):3973–3989CrossRef
52.
Zurück zum Zitat Vogler TJ, Borg JP, Grady DE (2012) On the scaling of steady structured waves in heterogeneous materials. J Appl Phys 112(12):123507CrossRef Vogler TJ, Borg JP, Grady DE (2012) On the scaling of steady structured waves in heterogeneous materials. J Appl Phys 112(12):123507CrossRef
53.
Zurück zum Zitat Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190(1–2):39–52CrossRef Wildman RA, Gazonas GA (2014) A finite difference-augmented peridynamics method for reducing wave dispersion. Int J Fract 190(1–2):39–52CrossRef
55.
Zurück zum Zitat Nishawala VV, Ostoja-Starzewski M, Leamy MJ, Demmie PN (2016) Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments. Wave Motion 60:73–83MathSciNetMATHCrossRef Nishawala VV, Ostoja-Starzewski M, Leamy MJ, Demmie PN (2016) Simulation of elastic wave propagation using cellular automata and peridynamics, and comparison with experiments. Wave Motion 60:73–83MathSciNetMATHCrossRef
57.
58.
Zurück zum Zitat Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New YorkMATHCrossRef Madenci E, Oterkus E (2014) Peridynamic theory and its applications. Springer, New YorkMATHCrossRef
59.
60.
Zurück zum Zitat Bode T, Weißenfels C, Wriggers P (2020) Mixed peridynamic formulations for compressible and incompressible finite deformations. Comput Mech 65:1365–1376MathSciNetMATHCrossRef Bode T, Weißenfels C, Wriggers P (2020) Mixed peridynamic formulations for compressible and incompressible finite deformations. Comput Mech 65:1365–1376MathSciNetMATHCrossRef
61.
Zurück zum Zitat Bode T, Weißenfels C, Wriggers P (2020) Peridynamic Petrov–Galerkin method: a generalization of the peridynamic theory of correspondence materials. Comput Methods Appl Mech Eng 358:112636MathSciNetMATHCrossRef Bode T, Weißenfels C, Wriggers P (2020) Peridynamic Petrov–Galerkin method: a generalization of the peridynamic theory of correspondence materials. Comput Methods Appl Mech Eng 358:112636MathSciNetMATHCrossRef
62.
Zurück zum Zitat Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168CrossRef Silling SA, Lehoucq RB (2010) Peridynamic theory of solid mechanics. Adv Appl Mech 44:73–168CrossRef
63.
Zurück zum Zitat Ostoja-Starzewski M, Demmie PN, Zubelewicz A (2013) On thermodynamic restrictions in peridynamics. J Appl Mech 80(1):014502CrossRef Ostoja-Starzewski M, Demmie PN, Zubelewicz A (2013) On thermodynamic restrictions in peridynamics. J Appl Mech 80(1):014502CrossRef
65.
Zurück zum Zitat Murdoch A (2012) Physical foundations of continuum mechanics. Cambridge University Press, CambridgeMATHCrossRef Murdoch A (2012) Physical foundations of continuum mechanics. Cambridge University Press, CambridgeMATHCrossRef
67.
Zurück zum Zitat Podio-Guidugli P (2017) On the modeling of transport phenomena in continuum and statistical mechanics. Discrete Contin Dyn Syst Ser S 10(6):1393–1411MathSciNetMATH Podio-Guidugli P (2017) On the modeling of transport phenomena in continuum and statistical mechanics. Discrete Contin Dyn Syst Ser S 10(6):1393–1411MathSciNetMATH
68.
70.
Zurück zum Zitat Nikravesh S, Gerstle W (2018) Improved state-based peridynamic lattice model including elasticity, plasticity and damage. Comput Model Eng Sci CMES 116:323–347 Nikravesh S, Gerstle W (2018) Improved state-based peridynamic lattice model including elasticity, plasticity and damage. Comput Model Eng Sci CMES 116:323–347
71.
Zurück zum Zitat Tupek MR, Radovitzky R (2014) An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J Mech Phys Solids 65(1):82–92MathSciNetMATHCrossRef Tupek MR, Radovitzky R (2014) An extended constitutive correspondence formulation of peridynamics based on nonlinear bond-strain measures. J Mech Phys Solids 65(1):82–92MathSciNetMATHCrossRef
72.
Zurück zum Zitat Javili A, McBride AT, Steinmann P (2019) Continuum-kinematics-inspired peridynamics. Mech Probl. J Mech Phys Solids 131:125–146MathSciNetCrossRef Javili A, McBride AT, Steinmann P (2019) Continuum-kinematics-inspired peridynamics. Mech Probl. J Mech Phys Solids 131:125–146MathSciNetCrossRef
73.
Zurück zum Zitat Javili A, Dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401MathSciNetMATHCrossRef Javili A, Dell’Isola F, Steinmann P (2013) Geometrically nonlinear higher-gradient elasticity with energetic boundaries. J Mech Phys Solids 61(12):2381–2401MathSciNetMATHCrossRef
74.
Zurück zum Zitat Auffray N, Dell’Isola F, Eremeyev VA, Madeo A, Rosi G (2015) Analytical continuum mechanics á la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 20(4):375–417MathSciNetMATHCrossRef Auffray N, Dell’Isola F, Eremeyev VA, Madeo A, Rosi G (2015) Analytical continuum mechanics á la Hamilton–Piola least action principle for second gradient continua and capillary fluids. Math Mech Solids 20(4):375–417MathSciNetMATHCrossRef
75.
Zurück zum Zitat Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535CrossRef Silling SA, Askari E (2005) A meshfree method based on the peridynamic model of solid mechanics. Comput Struct 83(17–18):1526–1535CrossRef
77.
Zurück zum Zitat Javili A, Steinmann P (2010) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199:755–765MathSciNetMATHCrossRef Javili A, Steinmann P (2010) A finite element framework for continua with boundary energies. Part II: the three-dimensional case. Comput Methods Appl Mech Eng 199:755–765MathSciNetMATHCrossRef
78.
Zurück zum Zitat Javili A, Mcbride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale: a unifying review. Appl Mech Rev 65(1):010802CrossRef Javili A, Mcbride A, Steinmann P (2013) Thermomechanics of solids with lower-dimensional energetics: On the importance of surface, interface, and curve structures at the nanoscale: a unifying review. Appl Mech Rev 65(1):010802CrossRef
79.
Zurück zum Zitat Javili A, McBride A, Steinmann P, Reddy BD (2014) A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput Mech 54:745–762MathSciNetMATHCrossRef Javili A, McBride A, Steinmann P, Reddy BD (2014) A unified computational framework for bulk and surface elasticity theory: a curvilinear-coordinate-based finite element methodology. Comput Mech 54:745–762MathSciNetMATHCrossRef
81.
Zurück zum Zitat Jenabidehkordi A, Rabczuk T (2019) The multi-horizon peridynamics. Comput Model Eng Sci CMES 121(2):493–500 Jenabidehkordi A, Rabczuk T (2019) The multi-horizon peridynamics. Comput Model Eng Sci CMES 121(2):493–500
82.
Zurück zum Zitat Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782MathSciNetMATHCrossRef Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782MathSciNetMATHCrossRef
83.
Zurück zum Zitat Rudraraju S, Ven AVD, Garikipati K (2014) Three-dimensional iso-geometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput Methods Appl Mech Eng 278:705–728MATHCrossRef Rudraraju S, Ven AVD, Garikipati K (2014) Three-dimensional iso-geometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput Methods Appl Mech Eng 278:705–728MATHCrossRef
85.
Zurück zum Zitat Seleson P, Parks M (2011) on the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng 9(6):689–706CrossRef Seleson P, Parks M (2011) on the role of the influence function in the peridynamic theory. Int J Multiscale Comput Eng 9(6):689–706CrossRef
Metadaten
Titel
The computational framework for continuum-kinematics-inspired peridynamics
verfasst von
A. Javili
S. Firooz
A. T. McBride
P. Steinmann
Publikationsdatum
30.07.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2020
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-020-01885-3

Weitere Artikel der Ausgabe 4/2020

Computational Mechanics 4/2020 Zur Ausgabe