Skip to main content
Erschienen in: Colloid and Polymer Science 8/2014

01.08.2014 | Original Contribution

The dielectric response of interfacial water—from the ordered structures to the single hydrated shell

verfasst von: Yuri Feldman, Alexander Puzenko, Paul Ben Ishai, Anna Gutina Greenbaum

Erschienen in: Colloid and Polymer Science | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Water is the universal solvent in nature. Does this imply, however, that its interaction with its environment is also a universal feature? While this question maybe too fundamental to be answered by one method only, we present evidence that the broadening of the dielectric spectra of water presents universal features of dipolar interactions with different types of matrixes. If in aqueous solutions the starting point of water’s state can be considered as bulk, with only partial interactions with the solute, then the state of water adsorbed in heterogeneous materials is determined by various hydration centers of the inhomogeneous material (the matrix) and it is significantly different from the bulk. In both cases, the dielectric spectrum of water is symmetrical and can be described by the Cole–Cole (CC) function. The phenomenological model that describes a physical mechanism of the dipole–matrix interaction in complex systems underlying the CC behavior has been applied to water adsorbed in porous glasses. It was then extended to analyses of the dynamic and structural behavior of water in nonionic and ionic aqueous solutions. The same model is then used to analyze the CC relaxation processes observed in clays, aqueous solutions of nucleotides, and amino acids.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bagchi B (2012) From anomalies in neat liquid to structure, dynamics and function in the biological world. Chem Phys Lett 529:1–9CrossRef Bagchi B (2012) From anomalies in neat liquid to structure, dynamics and function in the biological world. Chem Phys Lett 529:1–9CrossRef
2.
Zurück zum Zitat Chaplin M (2000) A proposal for the structuring of water. Biophys Chem 83:211–221CrossRef Chaplin M (2000) A proposal for the structuring of water. Biophys Chem 83:211–221CrossRef
3.
Zurück zum Zitat Oleinikova A, Brovchenko I, Geiger A, Guillot B (2002) Percolation of water in aqueous solution and liquid-liquid immiscibility. J Chem Phys 117:3296–3304CrossRef Oleinikova A, Brovchenko I, Geiger A, Guillot B (2002) Percolation of water in aqueous solution and liquid-liquid immiscibility. J Chem Phys 117:3296–3304CrossRef
4.
Zurück zum Zitat Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Y (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction. I. Water in nonionic solutions. J Chem Phys 136:114502–7CrossRef Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Y (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction. I. Water in nonionic solutions. J Chem Phys 136:114502–7CrossRef
5.
Zurück zum Zitat Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Y (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction. II. Water in ionic solutions. J Chem Phys 136:114503–7CrossRef Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Y (2012) Dielectric spectra broadening as the signature of dipole-matrix interaction. II. Water in ionic solutions. J Chem Phys 136:114503–7CrossRef
6.
Zurück zum Zitat Debye P (1929) Polar molecules. Dover, New York Debye P (1929) Polar molecules. Dover, New York
7.
Zurück zum Zitat Kaatze U (1989) Complex permittivity of water as a function of frequency and temperature. J Chem Phys Eng Data 34:371–374CrossRef Kaatze U (1989) Complex permittivity of water as a function of frequency and temperature. J Chem Phys Eng Data 34:371–374CrossRef
8.
Zurück zum Zitat Richards MGM (1993) Dissertation, University of London Richards MGM (1993) Dissertation, University of London
9.
Zurück zum Zitat Ellison WJ, Lamkaouchi K, Moreau JM (1996) Water: a dielectric reference. J Mol Liq 68:171–279CrossRef Ellison WJ, Lamkaouchi K, Moreau JM (1996) Water: a dielectric reference. J Mol Liq 68:171–279CrossRef
10.
Zurück zum Zitat Agmon N (1996) Tetrahedral displacement: the mechanism behind the Debye relaxation in water. J Phys Chem 100:1072–1080CrossRef Agmon N (1996) Tetrahedral displacement: the mechanism behind the Debye relaxation in water. J Phys Chem 100:1072–1080CrossRef
11.
Zurück zum Zitat Ben Ishai P, Tripathi SR, Kawase K, Puzenko A, and Feldman Yu (2014) What is the primary mover of water dynamics? PNAS (submitted) Ben Ishai P, Tripathi SR, Kawase K, Puzenko A, and Feldman Yu (2014) What is the primary mover of water dynamics? PNAS (submitted)
12.
Zurück zum Zitat Kaatze U (1997) The dielectric properties of water in its different states of interaction. J Solution Chem 26:1049–1112CrossRef Kaatze U (1997) The dielectric properties of water in its different states of interaction. J Solution Chem 26:1049–1112CrossRef
13.
Zurück zum Zitat Sato T, Buchner R (2005) Cooperative and molecular dynamics of alcohol/water mixtures: the view of dielectric spectroscopy. J Mol Liq 117:23–31CrossRef Sato T, Buchner R (2005) Cooperative and molecular dynamics of alcohol/water mixtures: the view of dielectric spectroscopy. J Mol Liq 117:23–31CrossRef
14.
Zurück zum Zitat Bakó I, Bencsura Á, Hermannson K, Bálint S, Grósz T, Chihaia V, Oláh J (2013) Hydrogen bond network topology in liquid water and methanol: a graph theory approach. Phys Chem Chem Phys 15:15163–15171CrossRef Bakó I, Bencsura Á, Hermannson K, Bálint S, Grósz T, Chihaia V, Oláh J (2013) Hydrogen bond network topology in liquid water and methanol: a graph theory approach. Phys Chem Chem Phys 15:15163–15171CrossRef
15.
Zurück zum Zitat Pártay LB, Jedlovszky P, Brovchenko I, Oleinikova A (2007) Formation of mesoscopic water networks in aqueous systems. Phys Chem Chem Phys 9:1341–1346CrossRef Pártay LB, Jedlovszky P, Brovchenko I, Oleinikova A (2007) Formation of mesoscopic water networks in aqueous systems. Phys Chem Chem Phys 9:1341–1346CrossRef
16.
Zurück zum Zitat Puzenko A, Ben Ishai P, Feldman Y (2010) Cole-Cole broadening in dielectric relaxation and strange kinetics. Phys Rev Lett 105:037601–4CrossRef Puzenko A, Ben Ishai P, Feldman Y (2010) Cole-Cole broadening in dielectric relaxation and strange kinetics. Phys Rev Lett 105:037601–4CrossRef
17.
Zurück zum Zitat Feldman Y, Puzenko AA, Ben Ishai P, Levy E (2013) Dielectric relaxation of water in complex system. In: Kalmykov YP (ed) Recent advances in broadband dielectric spectroscopy. NATO science for peace and security series B: physics and biophysics. Springer, Netherlands, pp 1–18CrossRef Feldman Y, Puzenko AA, Ben Ishai P, Levy E (2013) Dielectric relaxation of water in complex system. In: Kalmykov YP (ed) Recent advances in broadband dielectric spectroscopy. NATO science for peace and security series B: physics and biophysics. Springer, Netherlands, pp 1–18CrossRef
18.
Zurück zum Zitat Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351CrossRef Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351CrossRef
19.
Zurück zum Zitat Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRef Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77CrossRef
20.
Zurück zum Zitat Hilfer R (1995) Foundations of fractional dynamics. Fractals 3:549–556CrossRef Hilfer R (1995) Foundations of fractional dynamics. Fractals 3:549–556CrossRef
21.
Zurück zum Zitat Hilfer R (2000) Fractional time evolution. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 87-130 Hilfer R (2000) Fractional time evolution. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 87-130
22.
Zurück zum Zitat Hilfer R (2002) Experimental evidence for fractional time evolution in glass forming materials. J Chem Phys 284:399–408 Hilfer R (2002) Experimental evidence for fractional time evolution in glass forming materials. J Chem Phys 284:399–408
23.
Zurück zum Zitat Coffey WT, Kalmykov YP, Titov SV (2002) Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion. J Chem Phys 116:6422–6426CrossRef Coffey WT, Kalmykov YP, Titov SV (2002) Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion. J Chem Phys 116:6422–6426CrossRef
24.
Zurück zum Zitat Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering, 2nd edn, 14. World Scientific Series in Contemporary Chemical Physics, Singapore Coffey WT, Kalmykov YP, Waldron JT (2004) The Langevin equation: with applications to stochastic problems in physics, chemistry and electrical engineering, 2nd edn, 14. World Scientific Series in Contemporary Chemical Physics, Singapore
25.
Zurück zum Zitat Coffey WT, Kalmykov YP, Titov SV (2006) Fractional rotational diffusion and anomalous dielectric relaxation in dipole systems. In: Coffey WT, Kalmykov YP, Rice SA (eds) Fractals, diffusion, and relaxation in complex disordered systems: advances in chemical physics B 133. Wiley, New York, pp 285–437CrossRef Coffey WT, Kalmykov YP, Titov SV (2006) Fractional rotational diffusion and anomalous dielectric relaxation in dipole systems. In: Coffey WT, Kalmykov YP, Rice SA (eds) Fractals, diffusion, and relaxation in complex disordered systems: advances in chemical physics B 133. Wiley, New York, pp 285–437CrossRef
26.
Zurück zum Zitat Feldman Y, Puzenko A, Ya R (2006) Dielectric relaxation phenomena in complex materials. In: Coffey WT, Kalmykov YP, Rice SA (eds) Fractals, diffusion, and relaxation in complex disordered systems: advances in chemical physics A 133. Wiley, New York, pp 1–125 Feldman Y, Puzenko A, Ya R (2006) Dielectric relaxation phenomena in complex materials. In: Coffey WT, Kalmykov YP, Rice SA (eds) Fractals, diffusion, and relaxation in complex disordered systems: advances in chemical physics A 133. Wiley, New York, pp 1–125
27.
Zurück zum Zitat Puzenko A, Levy E, Shendrik A, Talary MS, Caduf A, Feldman Y (2012) Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5-triphosphate solutions. J Chem Phys 137:1945021–8CrossRef Puzenko A, Levy E, Shendrik A, Talary MS, Caduf A, Feldman Y (2012) Dielectric spectra broadening as a signature for dipole-matrix interaction. III. Water in adenosine monophosphate/adenosine-5-triphosphate solutions. J Chem Phys 137:1945021–8CrossRef
28.
Zurück zum Zitat Froehlich H (1958) Theory of dielectrics. Oxford, Clarendon Froehlich H (1958) Theory of dielectrics. Oxford, Clarendon
29.
Zurück zum Zitat Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Y (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58:237–254CrossRef Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Y (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58:237–254CrossRef
30.
Zurück zum Zitat Tombari E, Ferrari C, Salvetti G, Johari GP (2009) Dynamic and apparent specific heats during transformation of water in partly filled nanopores during slow cooling to 110 K and heating. Thermochim Acta 492:37–44CrossRef Tombari E, Ferrari C, Salvetti G, Johari GP (2009) Dynamic and apparent specific heats during transformation of water in partly filled nanopores during slow cooling to 110 K and heating. Thermochim Acta 492:37–44CrossRef
31.
Zurück zum Zitat Barthel J, Bachhuber K, Buchner R, Hetzenauer H (1990) Dielectric spectra of some common solvents in the mlcrowave region. Water and lower alcohols. Chem Phys Lett 165:369–373CrossRef Barthel J, Bachhuber K, Buchner R, Hetzenauer H (1990) Dielectric spectra of some common solvents in the mlcrowave region. Water and lower alcohols. Chem Phys Lett 165:369–373CrossRef
32.
Zurück zum Zitat Eisenberg D, Kauzmann W (1969) The structure and properties of water. Clarendon, Oxford Eisenberg D, Kauzmann W (1969) The structure and properties of water. Clarendon, Oxford
33.
Zurück zum Zitat Vasilyeva M, Gusev Y, Shtyrlin V, Greenbaum Gutina A, Puzenko A, Ben Ishai P. Feldman Yu (2014) Dielectric relaxation of water in natural layered aluminosilicates. Clays and Clay Minerals (in press) Vasilyeva M, Gusev Y, Shtyrlin V, Greenbaum Gutina A, Puzenko A, Ben Ishai P. Feldman Yu (2014) Dielectric relaxation of water in natural layered aluminosilicates. Clays and Clay Minerals (in press)
34.
Zurück zum Zitat Salles F, Devautour-Vinot S, Bildstein O, Jullien M, Maurin G, Giuntini JC, Douillard JM, Van Damme H (2008) Ionic mobility and hydration energies in montmorillonite clay. J Phys Chem C 112:14001–14009CrossRef Salles F, Devautour-Vinot S, Bildstein O, Jullien M, Maurin G, Giuntini JC, Douillard JM, Van Damme H (2008) Ionic mobility and hydration energies in montmorillonite clay. J Phys Chem C 112:14001–14009CrossRef
35.
Zurück zum Zitat Gutina A, Axelrod E, Puzenko A, Rysiakiewicz-Pasek E, Kozlovich N, Feldman Y (1998) Dielectric relaxation behavior of porous glasses. J Non-Cryst Solids 235(237):302–307CrossRef Gutina A, Axelrod E, Puzenko A, Rysiakiewicz-Pasek E, Kozlovich N, Feldman Y (1998) Dielectric relaxation behavior of porous glasses. J Non-Cryst Solids 235(237):302–307CrossRef
36.
Zurück zum Zitat Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Y (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58:237–254CrossRef Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Y (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58:237–254CrossRef
37.
Zurück zum Zitat Ryabov Y, Gutina A, Arkhipov V, Feldman Y (2001) Dielectric relaxation phenomena of water absorbed in porous glasses. J Phys Chem B 105:1845–1850CrossRef Ryabov Y, Gutina A, Arkhipov V, Feldman Y (2001) Dielectric relaxation phenomena of water absorbed in porous glasses. J Phys Chem B 105:1845–1850CrossRef
38.
Zurück zum Zitat Fuchs K, Kaatze U (2001) Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J Phys Chem B 105:2036–2042CrossRef Fuchs K, Kaatze U (2001) Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J Phys Chem B 105:2036–2042CrossRef
39.
Zurück zum Zitat Partay L, Jedlovszky P (2005) Line of percolation in supercritical water. J Chem Phys 123:024502–5CrossRef Partay L, Jedlovszky P (2005) Line of percolation in supercritical water. J Chem Phys 123:024502–5CrossRef
40.
Zurück zum Zitat Brovchenko I, Geiger A, Oleinikova A (2004) Clustering of water molecules in aqueous solutions: effect of water–solute interaction. Phys Chem Chem Phys 6:1982–1987CrossRef Brovchenko I, Geiger A, Oleinikova A (2004) Clustering of water molecules in aqueous solutions: effect of water–solute interaction. Phys Chem Chem Phys 6:1982–1987CrossRef
41.
Zurück zum Zitat Suzuki T (2008) The hydration of glucose: the local configurations in sugar–water hydrogen bond. Phys Chem Chem Phys 10:96–105CrossRef Suzuki T (2008) The hydration of glucose: the local configurations in sugar–water hydrogen bond. Phys Chem Chem Phys 10:96–105CrossRef
42.
Zurück zum Zitat Arkhipov VI (2002) Hierarchy of dielectric relaxation times in water. J Non-Cryst Solids 305:127–135CrossRef Arkhipov VI (2002) Hierarchy of dielectric relaxation times in water. J Non-Cryst Solids 305:127–135CrossRef
43.
Zurück zum Zitat Nörtemann K, Hilland J, Kaatze U (1997) Dielectric properties of aqueous NaCl solutions at microwave frequencies. J Phys Chem A 101:6864–6869CrossRef Nörtemann K, Hilland J, Kaatze U (1997) Dielectric properties of aqueous NaCl solutions at microwave frequencies. J Phys Chem A 101:6864–6869CrossRef
44.
Zurück zum Zitat Buchner R, Hefter GT, May PM (1999) Dielectric relaxation of aqueous NaCl solutions. J Phys Chem A 103:1–9CrossRef Buchner R, Hefter GT, May PM (1999) Dielectric relaxation of aqueous NaCl solutions. J Phys Chem A 103:1–9CrossRef
45.
Zurück zum Zitat Chen T, Hefter G, Buchner R (2003) Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J Phys Chem A 107:4025–4031CrossRef Chen T, Hefter G, Buchner R (2003) Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J Phys Chem A 107:4025–4031CrossRef
46.
Zurück zum Zitat Gulich R, Köhler M, Lunkenheimer P, Loidl A (2009) Dielectric spectroscopy on aqueous electrolytic solutions. Radiati Environ Biophys 48:107–114CrossRef Gulich R, Köhler M, Lunkenheimer P, Loidl A (2009) Dielectric spectroscopy on aqueous electrolytic solutions. Radiati Environ Biophys 48:107–114CrossRef
47.
Zurück zum Zitat Peyman A, Gabriel C, Grant EH (2007) Complex permittivity of sodium chloridesolutions at microwave frequencies. Bioelectromagnetics 28:264–274CrossRef Peyman A, Gabriel C, Grant EH (2007) Complex permittivity of sodium chloridesolutions at microwave frequencies. Bioelectromagnetics 28:264–274CrossRef
48.
Zurück zum Zitat Wei YZ, Chiang P, Sridhar S (1992) Ion size effects on the dynamic and static di-electric properties of aqueous alkali solutions. J Chem Phys 96:4569–4573CrossRef Wei YZ, Chiang P, Sridhar S (1992) Ion size effects on the dynamic and static di-electric properties of aqueous alkali solutions. J Chem Phys 96:4569–4573CrossRef
49.
Zurück zum Zitat Miyazaki T, Mogami G, Wazawa T, Kodama T, Suzuki M (2008) Measurement of the dielectric relaxation property of water-ion loose complex in aqueous solutions of salt at low concentrations. J Phys Chem A 112:10801–10806CrossRef Miyazaki T, Mogami G, Wazawa T, Kodama T, Suzuki M (2008) Measurement of the dielectric relaxation property of water-ion loose complex in aqueous solutions of salt at low concentrations. J Phys Chem A 112:10801–10806CrossRef
50.
Zurück zum Zitat Kaatze U (2007) Reference liquids for the calibration of dielectric sensors and measurement instruments. Meas Sci Technol 18:967–976CrossRef Kaatze U (2007) Reference liquids for the calibration of dielectric sensors and measurement instruments. Meas Sci Technol 18:967–976CrossRef
51.
Zurück zum Zitat Levy E, Cerveny S, Ermolina I, Puzenko A, Feldman Yu (2014) Dielectric spectra broadening as a signature for dipole-matrix interaction. IV. Water in amino acids solutions. J Chem Phys 140: (in press) Levy E, Cerveny S, Ermolina I, Puzenko A, Feldman Yu (2014) Dielectric spectra broadening as a signature for dipole-matrix interaction. IV. Water in amino acids solutions. J Chem Phys 140: (in press)
52.
Zurück zum Zitat Livshits L, Caduff A, Talary MS, Lutz HU, Hayashi Y, Puzenko A, Shendrik A, Feldman Y (2009) The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes. J Phys Chem B 113:2212–2220CrossRef Livshits L, Caduff A, Talary MS, Lutz HU, Hayashi Y, Puzenko A, Shendrik A, Feldman Y (2009) The role of GLUT1 in the sugar-induced dielectric response of human erythrocytes. J Phys Chem B 113:2212–2220CrossRef
53.
Zurück zum Zitat Meyer-Almes FJ, Porschke DJ (1997) The cyclic AMP receptor promoter DNA complex: a comparison of crystal and solution structure by quantitative molecular electrooptics. Mol Biol 269:842–850CrossRef Meyer-Almes FJ, Porschke DJ (1997) The cyclic AMP receptor promoter DNA complex: a comparison of crystal and solution structure by quantitative molecular electrooptics. Mol Biol 269:842–850CrossRef
Metadaten
Titel
The dielectric response of interfacial water—from the ordered structures to the single hydrated shell
verfasst von
Yuri Feldman
Alexander Puzenko
Paul Ben Ishai
Anna Gutina Greenbaum
Publikationsdatum
01.08.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 8/2014
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-014-3296-7

Weitere Artikel der Ausgabe 8/2014

Colloid and Polymer Science 8/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.