Skip to main content
Erschienen in: Acta Mechanica 4/2020

01.01.2020 | Original Paper

The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites

verfasst von: Xiaodong Xia, George J. Weng, Juanjuan Zhang, Yang Li

Erschienen in: Acta Mechanica | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Several recent experiments have revealed the remarkable influence of temperature and graphene concentration on the effective electrical properties of graphene–polymer nanocomposites, but no theory seems to exist at present to quantify such dependence. In this work, we develop a novel micromechanics-based homogenization scheme to connect the microstructural features of constituent phases to the temperature-dependent macroscopic conductivity and permittivity for the nanocomposites. The key microstructural features include the graphene volume concentration, temperature-dependent electrical properties of constituent phases, percolation threshold, imperfect mechanical bonding effect with temperature-degraded interlayer, and the temperature-dependent electron tunneling and Maxwell–Wagner–Sillars polarization. We consider the activation of free electrons and polarization of molecules to write the constitutive equations of polymer, and the collision and vibration probabilities to write those of graphene. We highlight the developed theory with a direct comparison to the experimental data of rGO/epoxy nanocomposites over the temperature range from 293 to 353 K. It shows that before the percolation threshold, the effective electrical conductivity and dielectric permittivity markedly increase with temperature, but after the percolation threshold, the influence of temperature diminishes significantly. In the latter case, the effective permittivity increases only slightly, while the conductivity exhibits an opposite trend.
Literatur
1.
Zurück zum Zitat Fan, S., Feng, X., Han, Y., Fan, Z., Lu, Y.: Nanomechanics of low-dimensional materials for functional applications. Nanoscale Horiz. 4, 781–788 (2019) Fan, S., Feng, X., Han, Y., Fan, Z., Lu, Y.: Nanomechanics of low-dimensional materials for functional applications. Nanoscale Horiz. 4, 781–788 (2019)
2.
Zurück zum Zitat Ji, L., Meduri, P., Agubra, V., Xiao, X., Alcoutlabi, M.: Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 6, 1502159 (2016) Ji, L., Meduri, P., Agubra, V., Xiao, X., Alcoutlabi, M.: Graphene-based nanocomposites for energy storage. Adv. Energy Mater. 6, 1502159 (2016)
3.
Zurück zum Zitat Faroughi, S., Rojas, E., Abdelkefi, A., Park, Y.: Reduced-order modeling and usefulness of non-uniform beams for flexoelectric energy harvesting applications. Acta Mech. 230, 2339–2361 (2019) MathSciNet Faroughi, S., Rojas, E., Abdelkefi, A., Park, Y.: Reduced-order modeling and usefulness of non-uniform beams for flexoelectric energy harvesting applications. Acta Mech. 230, 2339–2361 (2019) MathSciNet
4.
Zurück zum Zitat Hossain, M., Li, J.: Frequency-dependent dielectric properties of BTO/parylene nanocomposites with layered structure. Acta Mech. 229, 929–937 (2018) Hossain, M., Li, J.: Frequency-dependent dielectric properties of BTO/parylene nanocomposites with layered structure. Acta Mech. 229, 929–937 (2018)
5.
Zurück zum Zitat Eswaraiah, V., Balasubramaniam, K., Ramaprabhu, S.: Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21, 12626–12628 (2011) Eswaraiah, V., Balasubramaniam, K., Ramaprabhu, S.: Functionalized graphene reinforced thermoplastic nanocomposites as strain sensors in structural health monitoring. J. Mater. Chem. 21, 12626–12628 (2011)
6.
Zurück zum Zitat Moriche, R., Jiménez-Suárez, A., Sánchez, M., Prolongo, S.G., Ureña, A.: High sensitive damage sensors based on the use of functionalized graphene nanoplatelets coated fabrics as reinforcement in multiscale composite materials. Compos. Part B Eng. 149, 31–37 (2018) Moriche, R., Jiménez-Suárez, A., Sánchez, M., Prolongo, S.G., Ureña, A.: High sensitive damage sensors based on the use of functionalized graphene nanoplatelets coated fabrics as reinforcement in multiscale composite materials. Compos. Part B Eng. 149, 31–37 (2018)
7.
Zurück zum Zitat Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., et al.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014) Yousefi, N., Sun, X., Lin, X., Shen, X., Jia, J., Zhang, B., et al.: Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv. Mater. 26, 5480–5487 (2014)
8.
Zurück zum Zitat Chen, Y., Zhang, H.B., Yang, Y.B., Wang, M., Cao, A.Y., Yu, Z.Z.: High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016) Chen, Y., Zhang, H.B., Yang, Y.B., Wang, M., Cao, A.Y., Yu, Z.Z.: High-performance epoxy nanocomposites reinforced with three-dimensional carbon nanotube sponge for electromagnetic interference shielding. Adv. Funct. Mater. 26, 447–455 (2016)
9.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007) Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)
10.
Zurück zum Zitat Zhou, X., Li, D., Wan, S., Cheng, Q., Ji, B.: In silicon testing of the mechanical properties of graphene oxide-silk nanocomposites. Acta Mech. 230, 1413–1425 (2019) Zhou, X., Li, D., Wan, S., Cheng, Q., Ji, B.: In silicon testing of the mechanical properties of graphene oxide-silk nanocomposites. Acta Mech. 230, 1413–1425 (2019)
11.
Zurück zum Zitat Cong, P.H., Duc, N.D.: New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech. 229, 3651–3670 (2018)MathSciNetMATH Cong, P.H., Duc, N.D.: New approach to investigate the nonlinear dynamic response and vibration of a functionally graded multilayer graphene nanocomposite plate on a viscoelastic Pasternak medium in a thermal environment. Acta Mech. 229, 3651–3670 (2018)MathSciNetMATH
12.
Zurück zum Zitat Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z., Hamouda, A.: Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J. Appl. Phys. 110, 123715 (2011) Pan, Y., Weng, G.J., Meguid, S.A., Bao, W.S., Zhu, Z., Hamouda, A.: Percolation threshold and electrical conductivity of a two-phase composite containing randomly oriented ellipsoidal inclusions. J. Appl. Phys. 110, 123715 (2011)
13.
Zurück zum Zitat Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 (2015) Wang, Y., Shan, J.W., Weng, G.J.: Percolation threshold and electrical conductivity of graphene-based nanocomposites with filler agglomeration and interfacial tunneling. J. Appl. Phys. 118, 065101 (2015)
14.
Zurück zum Zitat Ji, X., Xu, Y., Zhang, W., Cui, L., Liu, J.: Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Part A 87, 29–45 (2016) Ji, X., Xu, Y., Zhang, W., Cui, L., Liu, J.: Review of functionalization, structure and properties of graphene/polymer composite fibers. Compos. Part A 87, 29–45 (2016)
15.
Zurück zum Zitat Wang, X., Gong, L.X., Tang, L.C., Peng, K., Pei, Y.B., Zhao, L., et al.: Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos. Part A 69, 288–298 (2015) Wang, X., Gong, L.X., Tang, L.C., Peng, K., Pei, Y.B., Zhao, L., et al.: Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos. Part A 69, 288–298 (2015)
16.
Zurück zum Zitat Cao, W.Q., Wang, X.X., Yuan, J., Wang, W.Z., Cao, M.S.: Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015) Cao, W.Q., Wang, X.X., Yuan, J., Wang, W.Z., Cao, M.S.: Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2015)
17.
Zurück zum Zitat Zhou, T., Boyd, J.G., Lutkenhaus, J.L., Lagoudas, D.C.: Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites. Acta Mech. 230, 265–280 (2019) Zhou, T., Boyd, J.G., Lutkenhaus, J.L., Lagoudas, D.C.: Micromechanics modeling of the elastic moduli of rGO/ANF nanocomposites. Acta Mech. 230, 265–280 (2019)
18.
Zurück zum Zitat Weng, G.J.: A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mech. Mater. 42, 886–893 (2010) Weng, G.J.: A dynamical theory for the Mori–Tanaka and Ponte Castañeda–Willis estimates. Mech. Mater. 42, 886–893 (2010)
19.
Zurück zum Zitat Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)MathSciNetMATH Hashin, Z., Shtrikman, S.: A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids 10, 343–352 (1962)MathSciNetMATH
20.
Zurück zum Zitat Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997) Nan, C.W., Birringer, R., Clarke, D.R., Gleiter, H.: Effective thermal conductivity of particulate composites with interfacial thermal resistance. J. Appl. Phys. 81, 6692–6699 (1997)
21.
Zurück zum Zitat Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B 73, 174203 (2006) Duan, H.L., Karihaloo, B.L., Wang, J., Yi, X.: Effective conductivities of heterogeneous media containing multiple inclusions with various spatial distributions. Phys. Rev. B 73, 174203 (2006)
22.
Zurück zum Zitat Xia, X.D., Su, Y., Zhong, Z., Weng, G.J.: A unified theory of plasticity, progressive damage and failure in graphene–metal nanocomposites. Int. J. Plast. 99, 58–80 (2017) Xia, X.D., Su, Y., Zhong, Z., Weng, G.J.: A unified theory of plasticity, progressive damage and failure in graphene–metal nanocomposites. Int. J. Plast. 99, 58–80 (2017)
23.
Zurück zum Zitat Xia, X.D., Wang, Y., Zhong, Z., Weng, G.J.: Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proc. R. Soc. Lond. A 472, 20160468 (2016)MathSciNetMATH Xia, X.D., Wang, Y., Zhong, Z., Weng, G.J.: Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proc. R. Soc. Lond. A 472, 20160468 (2016)MathSciNetMATH
24.
Zurück zum Zitat Bao, W.S., Meguid, S.A., Zhu, Z.H., Weng, G.J.: Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111, 093726 (2012) Bao, W.S., Meguid, S.A., Zhu, Z.H., Weng, G.J.: Tunneling resistance and its effect on the electrical conductivity of carbon nanotube nanocomposites. J. Appl. Phys. 111, 093726 (2012)
25.
Zurück zum Zitat Maxwell, J.C.: A Treatise on Electricity and Magnetism, 3rd edn. Clarendon Press, Oxford (1982)MATH Maxwell, J.C.: A Treatise on Electricity and Magnetism, 3rd edn. Clarendon Press, Oxford (1982)MATH
26.
Zurück zum Zitat Wagner, K.W.: The after effect in dielectrics. Arch. Electrotech. 2, 378–394 (1914) Wagner, K.W.: The after effect in dielectrics. Arch. Electrotech. 2, 378–394 (1914)
27.
Zurück zum Zitat Sillars, R.W.: The properties of a dielectric containing semiconducting particles of various shapes. Inst. Electr. Eng. Proc. Wirel. Sect. 12, 139–155 (1937) Sillars, R.W.: The properties of a dielectric containing semiconducting particles of various shapes. Inst. Electr. Eng. Proc. Wirel. Sect. 12, 139–155 (1937)
28.
Zurück zum Zitat Cao, W.Q., Wang, X.X., Yuan, J.: Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2010) Cao, W.Q., Wang, X.X., Yuan, J.: Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 3, 10017–10022 (2010)
29.
Zurück zum Zitat Yuan, J.K., Yao, S.H., Dang, Z.M., Sylvestre, A., Genestoux, M., Bai, J.B.: Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in Polyvinylidene Fluoride matrix through an enhanced interfacial interaction. J. Phys. Chem. C 115, 5515–5521 (2011) Yuan, J.K., Yao, S.H., Dang, Z.M., Sylvestre, A., Genestoux, M., Bai, J.B.: Giant dielectric permittivity nanocomposites: realizing true potential of pristine carbon nanotubes in Polyvinylidene Fluoride matrix through an enhanced interfacial interaction. J. Phys. Chem. C 115, 5515–5521 (2011)
30.
Zurück zum Zitat Wu, H., Liu, G., Wang, J.: Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes. Model. Simul. Mater. Sci. Eng. 12, 225–233 (2004) Wu, H., Liu, G., Wang, J.: Atomistic and continuum simulation on extension behaviour of single crystal with nano-holes. Model. Simul. Mater. Sci. Eng. 12, 225–233 (2004)
31.
Zurück zum Zitat Ponte Castañeda, P., Willis, J.R.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43, 1919–1951 (1995)MathSciNetMATH Ponte Castañeda, P., Willis, J.R.: The effect of spatial distribution on the effective behavior of composite materials and cracked media. J. Mech. Phys. Solids 43, 1919–1951 (1995)MathSciNetMATH
32.
Zurück zum Zitat Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973) Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)
33.
Zurück zum Zitat Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935) Bruggeman, D.A.G.: Calculation of various physics constants in heterogenous substances I: dielectricity constants and conductivity of mixed bodies from isotropic substances. Ann. Phys. 24, 636–664 (1935)
34.
Zurück zum Zitat Weng, G.J.: Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Eng. Sci. 30, 83–92 (1992)MathSciNetMATH Weng, G.J.: Explicit evaluation of Willis’ bounds with ellipsoidal inclusions. Int. J. Eng. Sci. 30, 83–92 (1992)MathSciNetMATH
35.
Zurück zum Zitat Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetMATH Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)MathSciNetMATH
36.
Zurück zum Zitat Švorčík, V., Králová, J., Rybka, V., Plešek, J., Červená, J., Hnatowicz, V.: Temperature dependence of the permittivity of polymer composites. J. Polym. Sci. B 39, 831–834 (2001) Švorčík, V., Králová, J., Rybka, V., Plešek, J., Červená, J., Hnatowicz, V.: Temperature dependence of the permittivity of polymer composites. J. Polym. Sci. B 39, 831–834 (2001)
37.
Zurück zum Zitat Hyun, J.G., Lee, S.Y., Cho, S.D., Paik, K.W.: Frequency and temperature dependence of dielectric constant of \(\text{epoxy/BaTiO}_{\rm 3}\) composite embedded capacitor films (ECFs) for organic substrate. In: Electronic Components and Technology Conference. pp. 1241–1247 (2005) Hyun, J.G., Lee, S.Y., Cho, S.D., Paik, K.W.: Frequency and temperature dependence of dielectric constant of \(\text{epoxy/BaTiO}_{\rm 3}\) composite embedded capacitor films (ECFs) for organic substrate. In: Electronic Components and Technology Conference. pp. 1241–1247 (2005)
38.
Zurück zum Zitat Cao, M.S., Song, W.L., Hou, Z.L., Wen, B., Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010) Cao, M.S., Song, W.L., Hou, Z.L., Wen, B., Yuan, J.: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48, 788–796 (2010)
39.
Zurück zum Zitat Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P.: Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008) Bolotin, K.I., Sikes, K.J., Hone, J., Stormer, H.L., Kim, P.: Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 101, 096802 (2008)
40.
Zurück zum Zitat Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y., Tanaka, T.: Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012) Huang, X., Zhi, C., Jiang, P., Golberg, D., Bando, Y., Tanaka, T.: Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012)
41.
Zurück zum Zitat Li, J., Weng, G.J.: A theory of domain switch for the nonlinear behaviour of ferroelectrics. Proc. R. Soc. Lond. A 455, 3493–3511 (1999)MathSciNetMATH Li, J., Weng, G.J.: A theory of domain switch for the nonlinear behaviour of ferroelectrics. Proc. R. Soc. Lond. A 455, 3493–3511 (1999)MathSciNetMATH
42.
Zurück zum Zitat Landau, L.D.: On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz. 11, 19–42 (1937) Landau, L.D.: On the theory of phase transitions. I. Zh. Eksp. Teor. Fiz. 11, 19–42 (1937)
43.
Zurück zum Zitat Ginzburg, V.L.: The dielectric properties of crystals of seignettcelectric substances and of barium titanate. Zh. Eksp. Teor. Fiz. 15, 739–749 (1945) Ginzburg, V.L.: The dielectric properties of crystals of seignettcelectric substances and of barium titanate. Zh. Eksp. Teor. Fiz. 15, 739–749 (1945)
44.
Zurück zum Zitat Su, Y., Weng, G.J.: The frequency dependence of microstructure evolution in a ferroelectric nano-film during AC dynamic polarization switching. Acta Mech. 229, 795–805 (2018) Su, Y., Weng, G.J.: The frequency dependence of microstructure evolution in a ferroelectric nano-film during AC dynamic polarization switching. Acta Mech. 229, 795–805 (2018)
45.
Zurück zum Zitat Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014) Wang, Y., Weng, G.J., Meguid, S.A., Hamouda, A.M.: A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites. J. Appl. Phys. 115, 193706 (2014)
46.
Zurück zum Zitat Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H.M.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013) Chen, Z., Xu, C., Ma, C., Ren, W., Cheng, H.M.: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)
47.
Zurück zum Zitat Mohiuddin, M., Hoa, S.V.: Temperature dependent electrical conductivity of CNT-PEEK composites. Compos. Sci. Technol. 72, 21–27 (2011) Mohiuddin, M., Hoa, S.V.: Temperature dependent electrical conductivity of CNT-PEEK composites. Compos. Sci. Technol. 72, 21–27 (2011)
48.
Zurück zum Zitat Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prud’homme, R.K., Brinson, L.C.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotech. 3, 327–331 (2008) Ramanathan, T., Abdala, A.A., Stankovich, S., Dikin, D.A., Herrera-Alonso, M., Piner, R.D., Adamson, D.H., Schniepp, H.C., Chen, X., Ruoff, R.S., Nguyen, S.T., Aksay, I.A., Prud’homme, R.K., Brinson, L.C.: Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotech. 3, 327–331 (2008)
Metadaten
Titel
The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites
verfasst von
Xiaodong Xia
George J. Weng
Juanjuan Zhang
Yang Li
Publikationsdatum
01.01.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 4/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-019-02588-4

Weitere Artikel der Ausgabe 4/2020

Acta Mechanica 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.