Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

25.10.2021

The Effects of Solidification Cooling and Growth Rates on Microstructure and Hardness of Supersaturated Al-7%Si-x%Zn Alloys

verfasst von: Rafael Kakitani, Camila Konno, Amauri Garcia, Noé Cheung

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

There is a lack of information in the literature about the effects of the solidification cooling (Ṫ) and growth (v) rates on both microstructure and mechanical properties of Al-Si-Zn alloys. Moreover, the relation between microstructural parameters and mechanical behavior is valuable information to evaluate the potential of Al-Si-Zn alloys. New applications can be attained when Zn is added to Al-Si alloys, due to the reduction in the liquidus temperature, TL, and improvement in mechanical properties. The present study investigates the evolution of microstructure and the corresponding effects on microhardness of Al-7wt.%Si-(10, 15, 20) wt.%Zn alloys, directionally solidified under unsteady-state conditions. The microstructure of the Al-7%Si-x%Zn alloys is shown to be characterized by a dendritic α-Al matrix, with the interdendritic region composed of α-Al, Si, and an AlFeSi-type intermetallic. The decrease in Ṫ and v resulted in coarsening of the dendrites. Dendritic scaling laws are experimentally determined relating primary, secondary, and tertiary dendritic spacings to Ṫ and v. The main mechanism of reinforcement is shown to be related to the supersaturated solid solution. The hardness of the Al-7%Si-10%Zn alloy is not influenced by refinement of the dendritic spacings, however, each further increment of about 5% Zn to this alloy resulted in a hardness increase of about 30 HV.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat F.C. Robles-Hernandez, J.M.H. Ramírez and R. Mackay, Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications, 1st ed. Springer, Cham, 2017.CrossRef F.C. Robles-Hernandez, J.M.H. Ramírez and R. Mackay, Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications, 1st ed. Springer, Cham, 2017.CrossRef
2.
Zurück zum Zitat J.-G. Jung, S.-H. Lee, J.-M. Lee, Y.-H. Cho, S.-H. Kim and W.-H. Yoon, Improved Mechanical Properties of Near-Eutectic Al-Si Piston Alloy Through Ultrasonic Melt Treatment, Mater. Sci. Eng. A, 2016, 669, p 187–195. CrossRef J.-G. Jung, S.-H. Lee, J.-M. Lee, Y.-H. Cho, S.-H. Kim and W.-H. Yoon, Improved Mechanical Properties of Near-Eutectic Al-Si Piston Alloy Through Ultrasonic Melt Treatment, Mater. Sci. Eng. A, 2016, 669, p 187–195. CrossRef
3.
Zurück zum Zitat V. Casalegno, M. Salvo, S. Rizzo, L. Goglio, O. Damiano and M. Ferraris, Joining of Carbon Fibre Reinforced Polymer to Al-Si Alloy for Space Application, Int. J. Adhes. Adhes., 2018, 82, p 146–152. CrossRef V. Casalegno, M. Salvo, S. Rizzo, L. Goglio, O. Damiano and M. Ferraris, Joining of Carbon Fibre Reinforced Polymer to Al-Si Alloy for Space Application, Int. J. Adhes. Adhes., 2018, 82, p 146–152. CrossRef
4.
Zurück zum Zitat W. Kasprzak, F. Czerwinski, M. Niewczas and D.L. Chen, Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications, J. Mater. Eng. Perform., 2015, 24(3), p 1365–1378. CrossRef W. Kasprzak, F. Czerwinski, M. Niewczas and D.L. Chen, Correlating Hardness Retention and Phase Transformations of Al and Mg Cast Alloys for Aerospace Applications, J. Mater. Eng. Perform., 2015, 24(3), p 1365–1378. CrossRef
5.
Zurück zum Zitat Y. Zhao, H.B. Liu and C.Y. Zhao, Experimental Study on the Cycling Stability and Corrosive Property of Al-Si Alloys as Phase Change Materials in High-Temperature Heat Storage, Sol. Energy Mat. Sol. Cells, 2019, 203, p 110165. CrossRef Y. Zhao, H.B. Liu and C.Y. Zhao, Experimental Study on the Cycling Stability and Corrosive Property of Al-Si Alloys as Phase Change Materials in High-Temperature Heat Storage, Sol. Energy Mat. Sol. Cells, 2019, 203, p 110165. CrossRef
6.
Zurück zum Zitat N. Gokon, S. Nakamura, T. Yamaguchi and T. Kodama, Cyclic Properties of Thermal Storage/Discharge for Al-Si Alloy in Vacuum for Solar Thermochemical Fuel Production, Energy Proc., 2015, 69, p 1759–1769. CrossRef N. Gokon, S. Nakamura, T. Yamaguchi and T. Kodama, Cyclic Properties of Thermal Storage/Discharge for Al-Si Alloy in Vacuum for Solar Thermochemical Fuel Production, Energy Proc., 2015, 69, p 1759–1769. CrossRef
7.
Zurück zum Zitat W. Liang, W. Tao, B. Zhu and Y. Zhang, Influence of Heating Parameters on Properties of the Al-Si Coating Applied to Hot Stamping, Sci. China Technol. Sci., 2017, 60(7), p 1088–1102. CrossRef W. Liang, W. Tao, B. Zhu and Y. Zhang, Influence of Heating Parameters on Properties of the Al-Si Coating Applied to Hot Stamping, Sci. China Technol. Sci., 2017, 60(7), p 1088–1102. CrossRef
8.
Zurück zum Zitat C.-J. Wang and S.-M. Chen, The high-Temperature Oxidation Behavior of Hot-Dipping Al-Si Coating on Low Carbon Steel, Surf. Coat. Tech., 2006, 200(22–23), p 6601–6605. CrossRef C.-J. Wang and S.-M. Chen, The high-Temperature Oxidation Behavior of Hot-Dipping Al-Si Coating on Low Carbon Steel, Surf. Coat. Tech., 2006, 200(22–23), p 6601–6605. CrossRef
9.
Zurück zum Zitat J.-H. Yoo, K.-S. Yun, R.S. Kalubarme, C.-N. Park and C.-J. Park, Hydrogen Generation Using the Corrosion of Al-Sn and Al-Si Alloys in an Alkaline Solution, Met. Mater. Int., 2014, 20(4), p 619–627. CrossRef J.-H. Yoo, K.-S. Yun, R.S. Kalubarme, C.-N. Park and C.-J. Park, Hydrogen Generation Using the Corrosion of Al-Sn and Al-Si Alloys in an Alkaline Solution, Met. Mater. Int., 2014, 20(4), p 619–627. CrossRef
10.
Zurück zum Zitat L. Soler, J. Macanás, M. Muñoz and J. Casado, Aluminum and Aluminum Alloys as Sources of Hydrogen for Fuel Cell Applications, J. Power Sour., 2007, 169(1), p 144–149. CrossRef L. Soler, J. Macanás, M. Muñoz and J. Casado, Aluminum and Aluminum Alloys as Sources of Hydrogen for Fuel Cell Applications, J. Power Sour., 2007, 169(1), p 144–149. CrossRef
11.
Zurück zum Zitat V. Srinivas, A.K. Singh, V.G. Krishna and G.M. Reddy, Vacuum Brazing of Dissimilar Component of AA2219 and AISI 304 by a Low Melting Al-18Ag-20Cu-5Si-0.2Zn Braze Alloy, J. Mater. Process. Technol., 2018, 252, p 1–12. CrossRef V. Srinivas, A.K. Singh, V.G. Krishna and G.M. Reddy, Vacuum Brazing of Dissimilar Component of AA2219 and AISI 304 by a Low Melting Al-18Ag-20Cu-5Si-0.2Zn Braze Alloy, J. Mater. Process. Technol., 2018, 252, p 1–12. CrossRef
12.
Zurück zum Zitat Z. Niu, J. Huang, K. Liu, F. Xu, S. Chen and X. Zhao, Brazing of 6061 Aluminum Alloy with the Novel Al-Si-Ge-Zn Filler Metal, Mater. Lett., 2016, 179, p 47–51. CrossRef Z. Niu, J. Huang, K. Liu, F. Xu, S. Chen and X. Zhao, Brazing of 6061 Aluminum Alloy with the Novel Al-Si-Ge-Zn Filler Metal, Mater. Lett., 2016, 179, p 47–51. CrossRef
13.
Zurück zum Zitat K. Suzuki, M. Kagayma and Y. Takeuchi, Eutectic Phase Equilibrium of Al-Si-Zn System and its Applicability for Lower Temperature Brazing, J. Jpn. Inst. Light Met., 1983, 43(10), p 533–538. (in Japanese)CrossRef K. Suzuki, M. Kagayma and Y. Takeuchi, Eutectic Phase Equilibrium of Al-Si-Zn System and its Applicability for Lower Temperature Brazing, J. Jpn. Inst. Light Met., 1983, 43(10), p 533–538. (in Japanese)CrossRef
14.
Zurück zum Zitat J. Yang, S. Xue, H. Liu, P. Xue and W. Dai, Effects of Silicon on Microstructures and Properties of Al-40Zn-xSi Filler Metal, Rare Metal Mater. Eng., 2016, 45(2), p 333–338. CrossRef J. Yang, S. Xue, H. Liu, P. Xue and W. Dai, Effects of Silicon on Microstructures and Properties of Al-40Zn-xSi Filler Metal, Rare Metal Mater. Eng., 2016, 45(2), p 333–338. CrossRef
15.
Zurück zum Zitat W. Luo, L.T. Wang, Q.M. Wang, H.L. Gong and M. Yan, A New Filler Metal with Low Contents of Cu for High Strength Aluminum Brazed Joints, Mater. Des., 2014, 63, p 263–269. CrossRef W. Luo, L.T. Wang, Q.M. Wang, H.L. Gong and M. Yan, A New Filler Metal with Low Contents of Cu for High Strength Aluminum Brazed Joints, Mater. Des., 2014, 63, p 263–269. CrossRef
16.
Zurück zum Zitat Z. Niu, J. Huang, H. Yang, S. Chen and X. Zhao, Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum, J. Mater. Eng. Perform., 2015, 24(6), p 2327–2334. CrossRef Z. Niu, J. Huang, H. Yang, S. Chen and X. Zhao, Preparation and Properties of a Novel Al-Si-Ge-Zn Filler Metal for Brazing Aluminum, J. Mater. Eng. Perform., 2015, 24(6), p 2327–2334. CrossRef
17.
Zurück zum Zitat L.C. Tsao, M.J. Chiang, W.H. Lin, M.D. Cheng and T.H. Chuang, Effects of Zinc Additions on the Microstructure and Melting Temperatures of Al-Si-Cu Filler Metals, Mater. Charact., 2002, 48(4), p 341–346. CrossRef L.C. Tsao, M.J. Chiang, W.H. Lin, M.D. Cheng and T.H. Chuang, Effects of Zinc Additions on the Microstructure and Melting Temperatures of Al-Si-Cu Filler Metals, Mater. Charact., 2002, 48(4), p 341–346. CrossRef
18.
Zurück zum Zitat J.L. Murray, The Al-Zn (aluminum-zinc) System, Bull. Alloy Phase Diagr., 1983, 4(1), p 55–73. CrossRef J.L. Murray, The Al-Zn (aluminum-zinc) System, Bull. Alloy Phase Diagr., 1983, 4(1), p 55–73. CrossRef
19.
Zurück zum Zitat O. Gusakova, V. Shepelevich, D. Alexandrov and I. Starodumov, Rapid Quenching Effect on the Microstructure of Al-Si Eutectic Zn-Doped Alloy, J. Cryst. Growth, 2020, 531, p 125333. CrossRef O. Gusakova, V. Shepelevich, D. Alexandrov and I. Starodumov, Rapid Quenching Effect on the Microstructure of Al-Si Eutectic Zn-Doped Alloy, J. Cryst. Growth, 2020, 531, p 125333. CrossRef
20.
Zurück zum Zitat E. Acer, E. Çadirli, H. Erol, H. Kaya and M. Gündüz, Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys, Metall. Mater. Trans. A, 2017, 48(12), p 5911–5923. CrossRef E. Acer, E. Çadirli, H. Erol, H. Kaya and M. Gündüz, Effects of Growth Rates and Compositions on Dendrite Arm Spacings in Directionally Solidified Al-Zn Alloys, Metall. Mater. Trans. A, 2017, 48(12), p 5911–5923. CrossRef
21.
Zurück zum Zitat S. García-Villarreal, A. Chávez-Valdez, K.J. Moreno, C. Leyva, J.A. Aguilar-Martínez, A. Hurtado and A. Arizmendi-Morquecho, Microstructural and Mechanical Characterization of Al-Zn-Si Nanocomposites, Mater. Charact., 2013, 83, p 187–197. CrossRef S. García-Villarreal, A. Chávez-Valdez, K.J. Moreno, C. Leyva, J.A. Aguilar-Martínez, A. Hurtado and A. Arizmendi-Morquecho, Microstructural and Mechanical Characterization of Al-Zn-Si Nanocomposites, Mater. Charact., 2013, 83, p 187–197. CrossRef
22.
Zurück zum Zitat A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova and R.Z. Valiev, Softening of Nanostructured Al-Zn and Al-Mg Alloys After Severe Plastic Deformation, Acta Mater., 2006, 54(15), p 3933–3939. CrossRef A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova and R.Z. Valiev, Softening of Nanostructured Al-Zn and Al-Mg Alloys After Severe Plastic Deformation, Acta Mater., 2006, 54(15), p 3933–3939. CrossRef
23.
Zurück zum Zitat F. Mao, S. Wei, C. Chen, C. Zhang, X. Wang and Z. Cao, Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition, Mater. Des., 2020, 186, p 108268. CrossRef F. Mao, S. Wei, C. Chen, C. Zhang, X. Wang and Z. Cao, Modification of the Silicon Phase and Mechanical Properties in Al-40Zn-6Si Alloy with Eu Addition, Mater. Des., 2020, 186, p 108268. CrossRef
25.
Zurück zum Zitat Y. Alemdağ and M. Beder, Microstructural, Mechanical and Tribological Properties of Al-7Si-(0–5) Zn Alloys, Mater. Des., 2014, 63, p 159–167. CrossRef Y. Alemdağ and M. Beder, Microstructural, Mechanical and Tribological Properties of Al-7Si-(0–5) Zn Alloys, Mater. Des., 2014, 63, p 159–167. CrossRef
27.
Zurück zum Zitat J.R. Davis, Alloying: Understanding the basis, 1st ed., ASM International, Materials Park, (2001) J.R. Davis, Alloying: Understanding the basis, 1st ed., ASM International, Materials Park, (2001)
28.
Zurück zum Zitat B. Wang, S. Xue, J. Wang and Z. Lin, Effect of Combinative Addition of Mischmetal and Titanium on the Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys Used for Brazing and/or Welding Consumables, J. Rare Earth, 2017, 35(2), p 193–202. CrossRef B. Wang, S. Xue, J. Wang and Z. Lin, Effect of Combinative Addition of Mischmetal and Titanium on the Microstructure and Mechanical Properties of Hypoeutectic Al-Si Alloys Used for Brazing and/or Welding Consumables, J. Rare Earth, 2017, 35(2), p 193–202. CrossRef
29.
Zurück zum Zitat W. Dai, S. Xue, F. Ji, J. Lou, B. Sun and S. Wang, Brazing 6061 Aluminum Alloy with Al-Si-Zn Filler Metals Containing Sr, Int. J. Min. Met. Mater., 2013, 20(4), p 365–370. CrossRef W. Dai, S. Xue, F. Ji, J. Lou, B. Sun and S. Wang, Brazing 6061 Aluminum Alloy with Al-Si-Zn Filler Metals Containing Sr, Int. J. Min. Met. Mater., 2013, 20(4), p 365–370. CrossRef
30.
Zurück zum Zitat I.V. Shutov, L.V. Kamaeva, M.D. Krivilyov, C.-N. Yu, SDj. Mesarovic and D.P. Sekulic, Effect of Processing Parameters on Microstructure in Brazing of Al-Si Alloys, J. Crys. Growth, 2020, 530, p 125287. CrossRef I.V. Shutov, L.V. Kamaeva, M.D. Krivilyov, C.-N. Yu, SDj. Mesarovic and D.P. Sekulic, Effect of Processing Parameters on Microstructure in Brazing of Al-Si Alloys, J. Crys. Growth, 2020, 530, p 125287. CrossRef
31.
Zurück zum Zitat M. Dias, R. Oliveira, R. Kakitani, N. Cheung, H. Henein, J.E. Spinelli and A. Garcia, Effects of Solidification Thermal Parameters and Bi Doping on Silicon Size, Morphology and Mechanical Properties of Al-15w.t% Si-3.2wt.% Bi and Al-18wt.% Si-3.2wt.% Bi Alloys, J. Mater. Res. Technol., 2020, 9(3), p 3460–3470. CrossRef M. Dias, R. Oliveira, R. Kakitani, N. Cheung, H. Henein, J.E. Spinelli and A. Garcia, Effects of Solidification Thermal Parameters and Bi Doping on Silicon Size, Morphology and Mechanical Properties of Al-15w.t% Si-3.2wt.% Bi and Al-18wt.% Si-3.2wt.% Bi Alloys, J. Mater. Res. Technol., 2020, 9(3), p 3460–3470. CrossRef
32.
Zurück zum Zitat R.V. Reyes, T.S. Bello, R. Kakitani, T.A. Costa, A. Garcia, N. Cheung and J.E. Spinelli, Tensile Properties and Related Microstructural Aspects of Hypereutectic Al-Si Alloys Directionally Solidified Under Different Melt Superheats and Transient Heat Flow Conditions, Mater. Sci. Eng. A, 2017, 685, p 235–243. CrossRef R.V. Reyes, T.S. Bello, R. Kakitani, T.A. Costa, A. Garcia, N. Cheung and J.E. Spinelli, Tensile Properties and Related Microstructural Aspects of Hypereutectic Al-Si Alloys Directionally Solidified Under Different Melt Superheats and Transient Heat Flow Conditions, Mater. Sci. Eng. A, 2017, 685, p 235–243. CrossRef
33.
Zurück zum Zitat C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli and A. Garcia, Characterization of Dendritic Microstructure, Intermetallic Phases, and Hardness of Directionally Solidified Al-Mg and Al-Mg-Si Alloys, Metall. Mater. Trans. A, 2015, 46(8), p 3342–3355. CrossRef C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli and A. Garcia, Characterization of Dendritic Microstructure, Intermetallic Phases, and Hardness of Directionally Solidified Al-Mg and Al-Mg-Si Alloys, Metall. Mater. Trans. A, 2015, 46(8), p 3342–3355. CrossRef
34.
Zurück zum Zitat M. Gündüz and E. Çardili, Directional Solidification of Aluminium-Copper Alloys, Mater. Sci. Eng. A, 2002, 327(2), p 167–185. CrossRef M. Gündüz and E. Çardili, Directional Solidification of Aluminium-Copper Alloys, Mater. Sci. Eng. A, 2002, 327(2), p 167–185. CrossRef
35.
Zurück zum Zitat Y.H. Cho, H.W. Kim, W. Kim, D.A. Jo and J.M. Lee, The Effect of Ni Additions on the Microstructure and Castability of Low Si Added Al Casting Alloys, Mater. Today-Proc., 2015, 2(10), p 4924–4930. CrossRef Y.H. Cho, H.W. Kim, W. Kim, D.A. Jo and J.M. Lee, The Effect of Ni Additions on the Microstructure and Castability of Low Si Added Al Casting Alloys, Mater. Today-Proc., 2015, 2(10), p 4924–4930. CrossRef
36.
Zurück zum Zitat H. Becker, T. Bergh, P.E. Vullum, A. Leineweber and Y. Li, Effect of Mn and Cooling Rates on α-, β-, δ-Al-Fe-Si Intermetallic Phase Formation in a Secondary Al-Si alloy, Materialia, 2019, 5, p 100198. CrossRef H. Becker, T. Bergh, P.E. Vullum, A. Leineweber and Y. Li, Effect of Mn and Cooling Rates on α-, β-, δ-Al-Fe-Si Intermetallic Phase Formation in a Secondary Al-Si alloy, Materialia, 2019, 5, p 100198. CrossRef
37.
Zurück zum Zitat S.G. Irizalp and N. Saklakoglu, Effect of Fe-Rich Intermetallics on the Microstructure and Mechanical Properties of Thixoformed A380 Aluminum Alloy, Eng. Sci. Technol. Int. J., 2014, 17(2), p 58–62. S.G. Irizalp and N. Saklakoglu, Effect of Fe-Rich Intermetallics on the Microstructure and Mechanical Properties of Thixoformed A380 Aluminum Alloy, Eng. Sci. Technol. Int. J., 2014, 17(2), p 58–62.
38.
Zurück zum Zitat A.E. Ares and C.E. Schvezov, Influence of Solidification Thermal Parameters on the Columnar-to-Equiaxed Transition of Aluminum-Zinc and Zinc-Aluminum Alloys, Metall. Mater. Trans. A, 2007, 38(7), p 1485–1499. CrossRef A.E. Ares and C.E. Schvezov, Influence of Solidification Thermal Parameters on the Columnar-to-Equiaxed Transition of Aluminum-Zinc and Zinc-Aluminum Alloys, Metall. Mater. Trans. A, 2007, 38(7), p 1485–1499. CrossRef
39.
Zurück zum Zitat M.D. Peres, C.A. Siqueira and A. Garcia, Macrostructural and Microstructural Development in Al–Si Alloys Directionally Solidified Under Unsteady-State Conditions, J. Alloys Compd., 2004, 381(1–2), p 168–181. CrossRef M.D. Peres, C.A. Siqueira and A. Garcia, Macrostructural and Microstructural Development in Al–Si Alloys Directionally Solidified Under Unsteady-State Conditions, J. Alloys Compd., 2004, 381(1–2), p 168–181. CrossRef
40.
Zurück zum Zitat R. Oliveira, R. Kakitani, L.R. Ramos, D.L. Gonçalves, A. Garcia and N. Cheung, The Roles of Mn and Ni Additions to Fe-Contamined Al in Neutralizing Fe and Stabilizing the Cellular α-Al Microstructure, J. Sustain. Met., 2019, 5(4), p 561–580. CrossRef R. Oliveira, R. Kakitani, L.R. Ramos, D.L. Gonçalves, A. Garcia and N. Cheung, The Roles of Mn and Ni Additions to Fe-Contamined Al in Neutralizing Fe and Stabilizing the Cellular α-Al Microstructure, J. Sustain. Met., 2019, 5(4), p 561–580. CrossRef
41.
Zurück zum Zitat J. Friedli, P. Di Napoli, M. Rappaz and J.A. Dantzig, Phase-Field Modeling of the Dendrite Orientation Transition in Al-Zn alloys, IOP Conf Ser. Mater. Sci., 2012, 33, p 012111. CrossRef J. Friedli, P. Di Napoli, M. Rappaz and J.A. Dantzig, Phase-Field Modeling of the Dendrite Orientation Transition in Al-Zn alloys, IOP Conf Ser. Mater. Sci., 2012, 33, p 012111. CrossRef
42.
Zurück zum Zitat S. Liu, R.E. Napolitano and R. Trivedi, Measurement of Anisotropy of Crystal-Melt Interfacial Energy for a Binary Al-Cu Alloy, Acta Mater., 2001, 49(20), p 4271–4276. CrossRef S. Liu, R.E. Napolitano and R. Trivedi, Measurement of Anisotropy of Crystal-Melt Interfacial Energy for a Binary Al-Cu Alloy, Acta Mater., 2001, 49(20), p 4271–4276. CrossRef
43.
Zurück zum Zitat J. Friedli, J.L. Fife, P. Di Napoli and M. Rappaz, Dendritic Growth Morphologies in Al-Zn Alloys – Part 1: X-ray Tomographic Microscopy, Metall. Mater. Trans. A, 2013, 44(12), p 5522–5531. CrossRef J. Friedli, J.L. Fife, P. Di Napoli and M. Rappaz, Dendritic Growth Morphologies in Al-Zn Alloys – Part 1: X-ray Tomographic Microscopy, Metall. Mater. Trans. A, 2013, 44(12), p 5522–5531. CrossRef
44.
Zurück zum Zitat E. Acer, E. Çadirli, H. Erol, H. Kaya, M. Şahin and M. Gündüz, Effect of Growth Velocity and Zn Content on Microhardness in Directionally Solidified Al-Zn Alloys, Mater. Res., 2018, 21(6), p e20180337. CrossRef E. Acer, E. Çadirli, H. Erol, H. Kaya, M. Şahin and M. Gündüz, Effect of Growth Velocity and Zn Content on Microhardness in Directionally Solidified Al-Zn Alloys, Mater. Res., 2018, 21(6), p e20180337. CrossRef
45.
Zurück zum Zitat Z. Chen, E. Wang and X. Hao, Microstructure and Orientation Evolution in Unidirectional Solidified Al-Zn Alloys, Mater. Sci. Eng. A, 2016, 667, p 1–8. CrossRef Z. Chen, E. Wang and X. Hao, Microstructure and Orientation Evolution in Unidirectional Solidified Al-Zn Alloys, Mater. Sci. Eng. A, 2016, 667, p 1–8. CrossRef
46.
Zurück zum Zitat F. Gonzales and M. Rappaz, Dendrite Growth Directions in Aluminum-Zinc Alloys, Metall. Mater. Trans. A, 2006, 37(9), p 2797–2806. CrossRef F. Gonzales and M. Rappaz, Dendrite Growth Directions in Aluminum-Zinc Alloys, Metall. Mater. Trans. A, 2006, 37(9), p 2797–2806. CrossRef
47.
Zurück zum Zitat R. Kakitani, C.B. Cruz, T.S. Lima, C. Brito, A. Garcia and N. Cheung, Transient Directional Solidification of a Eutectic Alloy: Macrostructure, Microstructure, Dendritic Growth and Hardness, Materialia, 2019, 7, p 100358. CrossRef R. Kakitani, C.B. Cruz, T.S. Lima, C. Brito, A. Garcia and N. Cheung, Transient Directional Solidification of a Eutectic Alloy: Macrostructure, Microstructure, Dendritic Growth and Hardness, Materialia, 2019, 7, p 100358. CrossRef
48.
Zurück zum Zitat D.M. Rosa, J.E. Spinelli and A. Garcia, Tertiary Dendrite Arm Spacing During Downward Transient Solidification of Al-Cu and Al-Si Alloys, Mater. Lett., 2006, 60(15), p 181–1874. CrossRef D.M. Rosa, J.E. Spinelli and A. Garcia, Tertiary Dendrite Arm Spacing During Downward Transient Solidification of Al-Cu and Al-Si Alloys, Mater. Lett., 2006, 60(15), p 181–1874. CrossRef
49.
Zurück zum Zitat L.A.S. Baptista, K.G. Paradela, I.L. Ferreira, A. Garcia and A.F. Ferreira, Experimental Study of the Evolution of Tertiary Dendritic Arms and Microsegregation in Directionally Solidified Al-Si-Cu Alloys Castings, J. Mater. Res. Technol., 2019, 8(1), p 1515–1521. CrossRef L.A.S. Baptista, K.G. Paradela, I.L. Ferreira, A. Garcia and A.F. Ferreira, Experimental Study of the Evolution of Tertiary Dendritic Arms and Microsegregation in Directionally Solidified Al-Si-Cu Alloys Castings, J. Mater. Res. Technol., 2019, 8(1), p 1515–1521. CrossRef
50.
Zurück zum Zitat B.M.C. Donadoni, L.F. Gomes, A. Garcia and J.E. Spinelli, Tailoring of Microstructures and Tensile Properties in the Solidification of Al-11Si(-xCu) Brazing Alloys, Metals, 2018, 8(10), p 784. CrossRef B.M.C. Donadoni, L.F. Gomes, A. Garcia and J.E. Spinelli, Tailoring of Microstructures and Tensile Properties in the Solidification of Al-11Si(-xCu) Brazing Alloys, Metals, 2018, 8(10), p 784. CrossRef
51.
Zurück zum Zitat B. Zhang, Y. Zhao, W. Chen, Q. Xu, M. Wang and H. Hou, Phase Field Simulation of Dendrite Sidebranching During Directional Solidification of Al-Si Alloy, J. Alloys Compd., 2019, 522, p 183–190. B. Zhang, Y. Zhao, W. Chen, Q. Xu, M. Wang and H. Hou, Phase Field Simulation of Dendrite Sidebranching During Directional Solidification of Al-Si Alloy, J. Alloys Compd., 2019, 522, p 183–190.
52.
Zurück zum Zitat F. Sá, O.L. Rocha, C.A. Siqueira and A. Garcia, The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys, Mater. Sci. Eng. A, 2004, 373(1–2), p 131–138. CrossRef F. Sá, O.L. Rocha, C.A. Siqueira and A. Garcia, The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn-Pb and Al-Cu Alloys, Mater. Sci. Eng. A, 2004, 373(1–2), p 131–138. CrossRef
53.
Zurück zum Zitat J.L. Murray and A.J. McAlister, The Al-Si (aluminum-silicon) System, Bull. Alloy Phase Diagr., 1984, 5(1), p 74–83. CrossRef J.L. Murray and A.J. McAlister, The Al-Si (aluminum-silicon) System, Bull. Alloy Phase Diagr., 1984, 5(1), p 74–83. CrossRef
54.
Zurück zum Zitat S. Sivasankaran, K.R. Ramkumar, H.R. Ammar, F.A. Al-Mufadi, A.S. Alaboodi and O.M. Irfan, Microstructural Evolutions and Enhanced Mechanical Performance of Novel Al-Zn Die-Casting Alloys Processed by Squeezing and Hot Extrusion, J. Mater. Process. Tech., 2021, 292, p 117063. CrossRef S. Sivasankaran, K.R. Ramkumar, H.R. Ammar, F.A. Al-Mufadi, A.S. Alaboodi and O.M. Irfan, Microstructural Evolutions and Enhanced Mechanical Performance of Novel Al-Zn Die-Casting Alloys Processed by Squeezing and Hot Extrusion, J. Mater. Process. Tech., 2021, 292, p 117063. CrossRef
55.
Zurück zum Zitat L. Liu, X. Pan, L. Lu, Y. Liu, X. Su and J. Wang, Phase Equilibria of 600 °C Isothermal Section of Zn-Al-Fe-Si Quaternary System, J. Phase Equilibria Diffus., 2016, 37(6), p 693–701. CrossRef L. Liu, X. Pan, L. Lu, Y. Liu, X. Su and J. Wang, Phase Equilibria of 600 °C Isothermal Section of Zn-Al-Fe-Si Quaternary System, J. Phase Equilibria Diffus., 2016, 37(6), p 693–701. CrossRef
56.
Zurück zum Zitat V. Raghavan, Al-Fe-Si-Zn (Aluminum-Iron-Silicon-Zinc), J. Phase Equilibria Diffus., 2011, 32(2), p 158–159. CrossRef V. Raghavan, Al-Fe-Si-Zn (Aluminum-Iron-Silicon-Zinc), J. Phase Equilibria Diffus., 2011, 32(2), p 158–159. CrossRef
57.
Zurück zum Zitat S. Pan, F. Yin, M. Zhao, Y. Liu and X. Su, The Zinc-Rich Corner of the 450 °C Isothermal Section of the Zn-Al-Fe-Si Quaternary System, J. Alloys Compd., 2009, 470(1–2), p 600–605. CrossRef S. Pan, F. Yin, M. Zhao, Y. Liu and X. Su, The Zinc-Rich Corner of the 450 °C Isothermal Section of the Zn-Al-Fe-Si Quaternary System, J. Alloys Compd., 2009, 470(1–2), p 600–605. CrossRef
58.
Zurück zum Zitat J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li and Y.H. Zhou, Primary Cellular/Dendritic Spacing Selection of Al–Zn Alloy During Unidirectional Solidification, J. Crys. Growth, 1999, 197(1–2), p 393–395. CrossRef J. Feng, W.D. Huang, X. Lin, Q.Y. Pan, T. Li and Y.H. Zhou, Primary Cellular/Dendritic Spacing Selection of Al–Zn Alloy During Unidirectional Solidification, J. Crys. Growth, 1999, 197(1–2), p 393–395. CrossRef
59.
Zurück zum Zitat P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung and A. Garcia, Cellular Growth During Transient Directional Solidification of Hypoeutectic Al–Fe Alloys, J. Alloys Compd., 2009, 470(1–2), p 589–599. CrossRef P.R. Goulart, K.S. Cruz, J.E. Spinelli, I.L. Ferreira, N. Cheung and A. Garcia, Cellular Growth During Transient Directional Solidification of Hypoeutectic Al–Fe Alloys, J. Alloys Compd., 2009, 470(1–2), p 589–599. CrossRef
60.
Zurück zum Zitat J. Campbell, Complete Casting Handbook, 2nd ed. Butterworth-Heinemann, Oxford, 2015. J. Campbell, Complete Casting Handbook, 2nd ed. Butterworth-Heinemann, Oxford, 2015.
61.
Zurück zum Zitat J.L. Song, S.B. Lin, C.L. Yang, C.L. Fan and G.C. Ma, Analysis of Intermetallic Layer in Dissimilar TIG Welding-Brazing Butt Joint of Aluminium Alloy to Stainless Steel, Sci. Technol. Weld. Joi., 2010, 15(3), p 213–218. CrossRef J.L. Song, S.B. Lin, C.L. Yang, C.L. Fan and G.C. Ma, Analysis of Intermetallic Layer in Dissimilar TIG Welding-Brazing Butt Joint of Aluminium Alloy to Stainless Steel, Sci. Technol. Weld. Joi., 2010, 15(3), p 213–218. CrossRef
62.
Zurück zum Zitat S.P. Nikaronov, L.I. Derkachenko, B.K. Kardashev, B.N. Korchunov, V.N. Osipov and V.V. Shpeizman, Structural and Physicomechanical Properties of Directionally Crystallized Aluminum-Silicon Alloys, Phys. Solid State., 2013, 55(6), p 1207–1213. CrossRef S.P. Nikaronov, L.I. Derkachenko, B.K. Kardashev, B.N. Korchunov, V.N. Osipov and V.V. Shpeizman, Structural and Physicomechanical Properties of Directionally Crystallized Aluminum-Silicon Alloys, Phys. Solid State., 2013, 55(6), p 1207–1213. CrossRef
63.
Zurück zum Zitat Ş Bayraktar and F. Afyon, Machinability Properties of Al-7Si, Al-7Si-4Zn and Al-7Si-4Zn-3Cu Alloys, J. Braz. Soc. Mech. Sci., 2020, 42(4), p 187. CrossRef Ş Bayraktar and F. Afyon, Machinability Properties of Al-7Si, Al-7Si-4Zn and Al-7Si-4Zn-3Cu Alloys, J. Braz. Soc. Mech. Sci., 2020, 42(4), p 187. CrossRef
64.
Zurück zum Zitat S. Kumar, M. Chakraborty, V.S. Sarma and B.S. Murty, Tensile and Wear Behaviour of in situ Al-7Si/TiB2 Particulate Composites, Wear, 2008, 265(1–2), p 134–142. CrossRef S. Kumar, M. Chakraborty, V.S. Sarma and B.S. Murty, Tensile and Wear Behaviour of in situ Al-7Si/TiB2 Particulate Composites, Wear, 2008, 265(1–2), p 134–142. CrossRef
Metadaten
Titel
The Effects of Solidification Cooling and Growth Rates on Microstructure and Hardness of Supersaturated Al-7%Si-x%Zn Alloys
verfasst von
Rafael Kakitani
Camila Konno
Amauri Garcia
Noé Cheung
Publikationsdatum
25.10.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06341-8

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.