Skip to main content
Erschienen in: Quantum Information Processing 5/2019

01.05.2019

The effects of system–environment correlations on heat transport and quantum entanglement via collision models

verfasst von: Zhong-Xiao Man, Qi Zhang, Yun-Jie Xia

Erschienen in: Quantum Information Processing | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

By means of collision models, we study the effects of system–environment correlations (SECs) on the heat transport and quantum entanglement in both transient and steady-state regimes. In the considered models, the reservoirs are simulated through two chains of particles whose nearest-neighbor collisions induce the SECs. In the first model, the system is a qubit connecting two independent reservoirs with different temperatures. We show that the heat currents exhibit oscillations and even reversed flows from the cold reservoir to the hot one depending on intracollision strengths of reservoir particles. In the stationary regime, we observe a nonlinear relation between heat currents and intracollision strengths, which can be accounted for by the established steady-state SECs. In our second model, the system contains two interacting qubits and we show that the initial entanglement of the system either vanishes within finite steps of collisions or recovers from disappearing and retains nonzero value. The combined regions of relevant parameters that sustain steady-state entanglement are presented. We also present a method to enhance the steady-state entanglement by enlarging temperature differences of the two reservoirs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Gemma, G., Michel, M., Mahler, G.: Quantum Thermodynamics. Springer, New York (2004) Gemma, G., Michel, M., Mahler, G.: Quantum Thermodynamics. Springer, New York (2004)
2.
Zurück zum Zitat Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015) Uzdin, R., Levy, A., Kosloff, R.: Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015)
3.
Zurück zum Zitat Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics-a topical review. J. Phys. A Math. Theor. 49, 143001 (2016)ADSMathSciNetCrossRef Goold, J., Huber, M., Riera, A., del Rio, L., Skrzypczyk, P.: The role of quantum information in thermodynamics-a topical review. J. Phys. A Math. Theor. 49, 143001 (2016)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545 (2016)ADSCrossRef Vinjanampathy, S., Anders, J.: Quantum thermodynamics. Contemp. Phys. 57, 545 (2016)ADSCrossRef
5.
Zurück zum Zitat Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799 (2000)ADSCrossRef Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799 (2000)ADSCrossRef
6.
Zurück zum Zitat Kieu, T.D.: The second law, maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNetCrossRef Kieu, T.D.: The second law, maxwell’s demon, and work derivable from quantum heat engines. Phys. Rev. Lett. 93, 140403 (2004)ADSMathSciNetCrossRef
7.
Zurück zum Zitat Leggio, B., Bellomo, B., Antezza, M.: Quantum thermal machines with single nonequilibrium environments. Phys. Rev. A 91, 012117 (2015)ADSMathSciNetCrossRef Leggio, B., Bellomo, B., Antezza, M.: Quantum thermal machines with single nonequilibrium environments. Phys. Rev. A 91, 012117 (2015)ADSMathSciNetCrossRef
8.
9.
Zurück zum Zitat Alicki, R., Gelbwaser-Klimovsky, D.: Non-equilibrium quantum heat machines. New J. Phys. 17, 115012 (2015)ADSCrossRef Alicki, R., Gelbwaser-Klimovsky, D.: Non-equilibrium quantum heat machines. New J. Phys. 17, 115012 (2015)ADSCrossRef
11.
Zurück zum Zitat Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75, 051118 (2007)ADSCrossRef Henrich, M.J., Mahler, G., Michel, M.: Driven spin systems as quantum thermodynamic machines: fundamental limits. Phys. Rev. E 75, 051118 (2007)ADSCrossRef
12.
Zurück zum Zitat Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hubner, W., Berakdar, J.: Quantum otto heat engine based on a multiferroic chain working substance. New J. Phys. 16, 063018 (2014)ADSCrossRef Azimi, M., Chotorlishvili, L., Mishra, S.K., Vekua, T., Hubner, W., Berakdar, J.: Quantum otto heat engine based on a multiferroic chain working substance. New J. Phys. 16, 063018 (2014)ADSCrossRef
13.
Zurück zum Zitat Leggio, B., Antezza, M.: Otto engine beyond its standard quantum limit. Phys. Rev. E 93, 022122 (2016)ADSCrossRef Leggio, B., Antezza, M.: Otto engine beyond its standard quantum limit. Phys. Rev. E 93, 022122 (2016)ADSCrossRef
14.
Zurück zum Zitat Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNetCrossRef Quan, H.T., Liu, Y.X., Sun, C.P., Nori, F.: Quantum thermodynamic cycles and quantum heat engines. Phys. Rev. E 76, 031105 (2007)ADSMathSciNetCrossRef
15.
Zurück zum Zitat Zagoskin, A.M., Savelev, S., Nori, F., Kusmartsev, F.V.: Squeezing as the source of inefficiency in the quantum otto cycle. Phys. Rev. B 86, 014501 (2012)ADSCrossRef Zagoskin, A.M., Savelev, S., Nori, F., Kusmartsev, F.V.: Squeezing as the source of inefficiency in the quantum otto cycle. Phys. Rev. B 86, 014501 (2012)ADSCrossRef
16.
Zurück zum Zitat Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)ADSCrossRef Linden, N., Popescu, S., Skrzypczyk, P.: How small can thermal machines be? The smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010)ADSCrossRef
17.
Zurück zum Zitat Correa, L.A., Palao, J.P., Adesso, G., Alonso, D.: Performance bound for quantum absorption refrigerators. Phys. Rev. E 87, 042131 (2013)ADSCrossRef Correa, L.A., Palao, J.P., Adesso, G., Alonso, D.: Performance bound for quantum absorption refrigerators. Phys. Rev. E 87, 042131 (2013)ADSCrossRef
18.
Zurück zum Zitat Brunner, N., Huber, M., Linden, N., Popescu, S., Silva, R., Skrzypczyk, P.: Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014)ADSCrossRef Brunner, N., Huber, M., Linden, N., Popescu, S., Silva, R., Skrzypczyk, P.: Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014)ADSCrossRef
19.
Zurück zum Zitat Kosloff, R., Geva, E., Gordon, J.M.: Quantum refrigerators in quest of the absolute zero. J. Appl. Phys. 87, 8093 (2000)ADSCrossRef Kosloff, R., Geva, E., Gordon, J.M.: Quantum refrigerators in quest of the absolute zero. J. Appl. Phys. 87, 8093 (2000)ADSCrossRef
20.
Zurück zum Zitat Brask, J.B., Brunner, N.: Small quantum absorption refrigerator in the transient regime: time scales, enhanced cooling, and entanglement. Phys. Rev. E 92, 062101 (2015)ADSCrossRef Brask, J.B., Brunner, N.: Small quantum absorption refrigerator in the transient regime: time scales, enhanced cooling, and entanglement. Phys. Rev. E 92, 062101 (2015)ADSCrossRef
21.
Zurück zum Zitat Silva, R., Skrzypczyk, P., Brunner, N.: Small quantum absorption refrigerator with reversed couplings. Phys. Rev. E 92, 012136 (2015)ADSCrossRef Silva, R., Skrzypczyk, P., Brunner, N.: Small quantum absorption refrigerator with reversed couplings. Phys. Rev. E 92, 012136 (2015)ADSCrossRef
22.
Zurück zum Zitat Yu, C.S., Zhu, Q.Y.: Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Phys. Rev. E 90, 052142 (2014)ADSCrossRef Yu, C.S., Zhu, Q.Y.: Re-examining the self-contained quantum refrigerator in the strong-coupling regime. Phys. Rev. E 90, 052142 (2014)ADSCrossRef
23.
Zurück zum Zitat Man, Z.X., Xia, Y.J.: Smallest quantum thermal machine: the effect of strong coupling and distributed thermal tasks. Phys. Rev. E 96, 012122 (2017)ADSCrossRef Man, Z.X., Xia, Y.J.: Smallest quantum thermal machine: the effect of strong coupling and distributed thermal tasks. Phys. Rev. E 96, 012122 (2017)ADSCrossRef
24.
Zurück zum Zitat He, Z.C., Huang, X.Y., Yu, C.S.: Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. Phys. Rev. E 96, 052126 (2017)ADSCrossRef He, Z.C., Huang, X.Y., Yu, C.S.: Enabling the self-contained refrigerator to work beyond its limits by filtering the reservoirs. Phys. Rev. E 96, 052126 (2017)ADSCrossRef
25.
Zurück zum Zitat Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007)ADSMathSciNetCrossRef Wichterich, H., Henrich, M.J., Breuer, H.P., Gemmer, J., Michel, M.: Modeling heat transport through completely positive maps. Phys. Rev. E 76, 031115 (2007)ADSMathSciNetCrossRef
26.
Zurück zum Zitat Nicacio, F., Ferraro, A., Imparato, A., Paternostro, M., Semiao, F.L.: Thermal transport in out-of-equilibrium quantum harmonic chains. Phys. Rev. E 91, 042116 (2015)ADSMathSciNetCrossRef Nicacio, F., Ferraro, A., Imparato, A., Paternostro, M., Semiao, F.L.: Thermal transport in out-of-equilibrium quantum harmonic chains. Phys. Rev. E 91, 042116 (2015)ADSMathSciNetCrossRef
27.
Zurück zum Zitat Oviedo-Casado, S., Prior, J., Chin, A.W., Rosenbach, R., Huelga, S.F., Plenio, M.B.: Phase-dependent exciton transport and energy harvesting from thermal environments. Phys. Rev. A 93, 02010 (2016)CrossRef Oviedo-Casado, S., Prior, J., Chin, A.W., Rosenbach, R., Huelga, S.F., Plenio, M.B.: Phase-dependent exciton transport and energy harvesting from thermal environments. Phys. Rev. A 93, 02010 (2016)CrossRef
28.
Zurück zum Zitat Werlang, T., Marchiori, M.A., Cornelio, M.F., Valente, D.: Optimal rectification in the ultrastrong coupling regime. Phys. Rev. E 89, 062109 (2014)ADSCrossRef Werlang, T., Marchiori, M.A., Cornelio, M.F., Valente, D.: Optimal rectification in the ultrastrong coupling regime. Phys. Rev. E 89, 062109 (2014)ADSCrossRef
29.
Zurück zum Zitat Ordonez-Miranda, J., Ezzahri, Y., Joulain, K.: Quantum thermal diode based on two interacting spinlike systems under different excitations. Phys. Rev. E 95, 022128 (2017)ADSCrossRef Ordonez-Miranda, J., Ezzahri, Y., Joulain, K.: Quantum thermal diode based on two interacting spinlike systems under different excitations. Phys. Rev. E 95, 022128 (2017)ADSCrossRef
30.
Zurück zum Zitat Werlang, T., Valente, D.: Heat transport between two pure-dephasing reservoirs. Phys. Rev. E 91, 012143 (2015)ADSCrossRef Werlang, T., Valente, D.: Heat transport between two pure-dephasing reservoirs. Phys. Rev. E 91, 012143 (2015)ADSCrossRef
31.
Zurück zum Zitat Man, Z.X., An, N.B., Xia, Y.J.: Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems. Phys. Rev. E 94, 042135 (2016)ADSCrossRef Man, Z.X., An, N.B., Xia, Y.J.: Controlling heat flows among three reservoirs asymmetrically coupled to two two-level systems. Phys. Rev. E 94, 042135 (2016)ADSCrossRef
33.
Zurück zum Zitat Scarani, V., Ziman, M., Stelmachovic, P., Gisin, N., Buzek, V.: Thermalizing quantum machines: dissipation and entanglement. Phys. Rev. Lett. 88, 097905 (2002)ADSCrossRef Scarani, V., Ziman, M., Stelmachovic, P., Gisin, N., Buzek, V.: Thermalizing quantum machines: dissipation and entanglement. Phys. Rev. Lett. 88, 097905 (2002)ADSCrossRef
34.
Zurück zum Zitat Ziman, M., Stelmachovic, P., Buzek, V., Hillery, M., Scarani, V., Gisin, N.: Diluting quantum information: an analysis of information transfer in system–reservoir interactions. Phys. Rev. A 65, 042105 (2002)ADSCrossRef Ziman, M., Stelmachovic, P., Buzek, V., Hillery, M., Scarani, V., Gisin, N.: Diluting quantum information: an analysis of information transfer in system–reservoir interactions. Phys. Rev. A 65, 042105 (2002)ADSCrossRef
35.
Zurück zum Zitat Ciccarello, F., Palma, G.M., Giovannetti, V.: Collisionmodel-based approach to non-markovian quantum dynamics. Phys. Rev. A 87, 040103 (2013)ADSCrossRef Ciccarello, F., Palma, G.M., Giovannetti, V.: Collisionmodel-based approach to non-markovian quantum dynamics. Phys. Rev. A 87, 040103 (2013)ADSCrossRef
36.
Zurück zum Zitat Kretschmer, S., Luoma, K., Strunz, W.T.: Collision model for non-markovian quantum dynamics. Phys. Rev. A 94, 012106 (2016)ADSCrossRef Kretschmer, S., Luoma, K., Strunz, W.T.: Collision model for non-markovian quantum dynamics. Phys. Rev. A 94, 012106 (2016)ADSCrossRef
37.
Zurück zum Zitat Cakmak, B., Pezzutto, M., Paternostro, M., Mustecaplioglu, O.E.: Non-Markovianity, coherence, and system–environment correlations in a long-range collision model. Phys. Rev. A 96, 022109 (2017)ADSCrossRef Cakmak, B., Pezzutto, M., Paternostro, M., Mustecaplioglu, O.E.: Non-Markovianity, coherence, and system–environment correlations in a long-range collision model. Phys. Rev. A 96, 022109 (2017)ADSCrossRef
38.
Zurück zum Zitat Lorenzo, S., Ciccarello, F., Palma, G.M.: Composite quantum collision models. Phys. Rev. A 96, 032107 (2017)ADSCrossRef Lorenzo, S., Ciccarello, F., Palma, G.M.: Composite quantum collision models. Phys. Rev. A 96, 032107 (2017)ADSCrossRef
39.
Zurück zum Zitat Filippov, S.N., Piilo, J., Maniscalco, S., Ziman, M.: Divisibility of quantum dynamical maps and collision models. Phys. Rev. A 96, 032111 (2017)ADSCrossRef Filippov, S.N., Piilo, J., Maniscalco, S., Ziman, M.: Divisibility of quantum dynamical maps and collision models. Phys. Rev. A 96, 032111 (2017)ADSCrossRef
40.
Zurück zum Zitat McCloskey, R., Paternostro, M.: Non-Markovianity and system-environment correlations in a microscopic collision model. Phys. Rev. A 89, 052120 (2014)ADSCrossRef McCloskey, R., Paternostro, M.: Non-Markovianity and system-environment correlations in a microscopic collision model. Phys. Rev. A 89, 052120 (2014)ADSCrossRef
41.
Zurück zum Zitat Bernardes, N.K., Carvalho, A.R.R., Monken, C.H., Santos, M.F.: Environmental correlations and Markovian to non-Markovian transitions in collisional model. Phys. Rev. A 90, 032111 (2014)ADSCrossRef Bernardes, N.K., Carvalho, A.R.R., Monken, C.H., Santos, M.F.: Environmental correlations and Markovian to non-Markovian transitions in collisional model. Phys. Rev. A 90, 032111 (2014)ADSCrossRef
42.
Zurück zum Zitat Jin, J., Yu, C.S.: Non-markovianity in the collision model with environmental block. New J. Phys. 20, 053026 (2018)ADSCrossRef Jin, J., Yu, C.S.: Non-markovianity in the collision model with environmental block. New J. Phys. 20, 053026 (2018)ADSCrossRef
43.
Zurück zum Zitat Jin, J., Giovannetti, V., Fazio, R., Sciarrino, F., Mataloni, P., Crespi, A., Osellame, R.: All-optical non-Markovian stroboscopic quantum simulator. Phys. Rev. A 91, 012122 (2015)ADSCrossRef Jin, J., Giovannetti, V., Fazio, R., Sciarrino, F., Mataloni, P., Crespi, A., Osellame, R.: All-optical non-Markovian stroboscopic quantum simulator. Phys. Rev. A 91, 012122 (2015)ADSCrossRef
44.
Zurück zum Zitat Cuevas, Á., Geraldi, A., Liorni, C., Diego Bonavena, L., De Pasquale, A., Sciarrino, F., Giovannetti, V., Mataloni, P.: All optical implementation of collision-based evolutions of open quantum systems (2018). arXiv:1809.01922 [quant-ph] Cuevas, Á., Geraldi, A., Liorni, C., Diego Bonavena, L., De Pasquale, A., Sciarrino, F., Giovannetti, V., Mataloni, P.: All optical implementation of collision-based evolutions of open quantum systems (2018). arXiv:​1809.​01922 [quant-ph]
45.
Zurück zum Zitat Man, Z.X., Xia, Y.J., Franco, R.L.: Temperature effects on quantum non-Markovianity via collision models. Phys. Rev. A 97, 062104 (2015)ADSCrossRef Man, Z.X., Xia, Y.J., Franco, R.L.: Temperature effects on quantum non-Markovianity via collision models. Phys. Rev. A 97, 062104 (2015)ADSCrossRef
46.
Zurück zum Zitat Lorenzo, S., McCloskey, R., Ciccarello, F., Paternostro, M., Palma, G.M.: Landauer’s principle in multipartite open quantum system dynamics. Phys. Rev. Lett. 115, 120403 (2015)ADSCrossRef Lorenzo, S., McCloskey, R., Ciccarello, F., Paternostro, M., Palma, G.M.: Landauer’s principle in multipartite open quantum system dynamics. Phys. Rev. Lett. 115, 120403 (2015)ADSCrossRef
47.
Zurück zum Zitat Lorenzo, S., Farace, A., Ciccarello, F., Palma, G.M., Giovannetti, V.: Heat flux and quantum correlations in dissipative cascaded systems. Phys. Rev. A 91, 022121 (2015)ADSCrossRef Lorenzo, S., Farace, A., Ciccarello, F., Palma, G.M., Giovannetti, V.: Heat flux and quantum correlations in dissipative cascaded systems. Phys. Rev. A 91, 022121 (2015)ADSCrossRef
48.
Zurück zum Zitat Pezzutto, M., Paternostro, M., Omar, Y.: Implications of non-markovian quantum dynamics for the landauer bound. New J. Phys. 18, 123018 (2016)ADSCrossRef Pezzutto, M., Paternostro, M., Omar, Y.: Implications of non-markovian quantum dynamics for the landauer bound. New J. Phys. 18, 123018 (2016)ADSCrossRef
49.
Zurück zum Zitat Li, L., Zou, J., Li, H., Xu, B.M., Wang, Y.M., Shao, B.: Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model. Phys. Rev. E 97, 022111 (2018)ADSCrossRef Li, L., Zou, J., Li, H., Xu, B.M., Wang, Y.M., Shao, B.: Effect of coherence of nonthermal reservoirs on heat transport in a microscopic collision model. Phys. Rev. E 97, 022111 (2018)ADSCrossRef
50.
Zurück zum Zitat Chiara, G.D., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20, 113024 (2018)CrossRef Chiara, G.D., Landi, G., Hewgill, A., Reid, B., Ferraro, A., Roncaglia, A.J., Antezza, M.: Reconciliation of quantum local master equations with thermodynamics. New J. Phys. 20, 113024 (2018)CrossRef
51.
52.
Zurück zum Zitat Kumar, A.: Multiparty quantum mutual information: an alternative definition. Phys. Rev. A 96, 012332 (2017)ADSCrossRef Kumar, A.: Multiparty quantum mutual information: an alternative definition. Phys. Rev. A 96, 012332 (2017)ADSCrossRef
54.
Zurück zum Zitat Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2007)MATH Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2007)MATH
55.
Zurück zum Zitat Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)ADSCrossRef Arnesen, M.C., Bose, S., Vedral, V.: Natural thermal and magnetic entanglement in the 1D heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)ADSCrossRef
56.
Zurück zum Zitat Wang, X.G.: Entanglement in the quantum heisenberg XY model. Phys. Rev. A 64, 012313 (2001)ADSCrossRef Wang, X.G.: Entanglement in the quantum heisenberg XY model. Phys. Rev. A 64, 012313 (2001)ADSCrossRef
57.
Zurück zum Zitat Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Thermal concurrence mixing in a one-dimensional ising model. Phys. Rev. A 64, 042302 (2001)ADSCrossRef Gunlycke, D., Kendon, V.M., Vedral, V., Bose, S.: Thermal concurrence mixing in a one-dimensional ising model. Phys. Rev. A 64, 042302 (2001)ADSCrossRef
58.
Zurück zum Zitat Eisler, V., Zimboras, Z.: Entanglement in the XX spin chain with an energy current. Phys. Rev. A 71, 042318 (2005)ADSCrossRef Eisler, V., Zimboras, Z.: Entanglement in the XX spin chain with an energy current. Phys. Rev. A 71, 042318 (2005)ADSCrossRef
59.
Zurück zum Zitat Quiroga, L., Rodrguez, F.J., Ramrez, M.E., Pars, R.: Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007)ADSCrossRef Quiroga, L., Rodrguez, F.J., Ramrez, M.E., Pars, R.: Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007)ADSCrossRef
60.
Zurück zum Zitat Sinaysky, I., Petruccione, F., Burgarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev. A 78, 062301 (2008)ADSCrossRef Sinaysky, I., Petruccione, F., Burgarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev. A 78, 062301 (2008)ADSCrossRef
61.
Zurück zum Zitat Huang, X.L., Guo, J.L., Yi, X.X.: Nonequilibrium thermal entanglement in a three-qubit XX model. Phys. Rev. A 80, 054301 (2009)ADSCrossRef Huang, X.L., Guo, J.L., Yi, X.X.: Nonequilibrium thermal entanglement in a three-qubit XX model. Phys. Rev. A 80, 054301 (2009)ADSCrossRef
62.
Zurück zum Zitat Brask, J.B., Haack, G., Brunner, N., Huber, M.: Autonomous quantum thermal machine for generating steady-state entanglement. New J. Phys. 17, 113029 (2015)ADSCrossRef Brask, J.B., Haack, G., Brunner, N., Huber, M.: Autonomous quantum thermal machine for generating steady-state entanglement. New J. Phys. 17, 113029 (2015)ADSCrossRef
63.
Zurück zum Zitat Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRef Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)ADSCrossRef
Metadaten
Titel
The effects of system–environment correlations on heat transport and quantum entanglement via collision models
verfasst von
Zhong-Xiao Man
Qi Zhang
Yun-Jie Xia
Publikationsdatum
01.05.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 5/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2275-9

Weitere Artikel der Ausgabe 5/2019

Quantum Information Processing 5/2019 Zur Ausgabe

Neuer Inhalt