Skip to main content

2021 | OriginalPaper | Buchkapitel

2. The Fire-Resistive Principle

verfasst von : Kevin LaMalva, John Gales, Anthony Abu, Luke Bisby

Erschienen in: International Handbook of Structural Fire Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Evaluation of structural fire protection may be considered within two distinct domains: the time domain and the strength domain. Time is conventionally used for standard fire resistance requirements in building codes, in which a particular fire resistance assembly is shown to provide adequate resistance to a standard fire exposure under test conditions for a period of time. Strength compares applied gravity loads and fire effects (e.g., thermally induced forces) to the capacity (e.g., temperature-dependent strength) of the structural system.
In the context of structural engineering, the fundamental philosophy used to design structures can be simply expressed as capacity > demand. The demand refers to loads that are imposed on a structure including its self-weight. The capacity refers to the global and local ability of a structure to carry an imposed demand. The conventional design of a structural system evaluates demand and capacity with respect to specific performance objectives including strength, stability, and stiffness.
Evaluation of structural fire protection within the time domain primarily considers the demand on the structure due to heating, which can be reduced with the application of protective insulation. However, this type of evaluation does not necessarily credit nor discount the capacity of the structure itself to endure fire exposure nor does it properly evaluate all aspects of the demand (e.g., thermally induced forces; see Sect. 2.1.4). Also, the consideration of demand due to heating is not with respect to specific performance objectives, but rather superficial failure criteria enforced during standard fire testing.
Evaluation of structural fire protection within the strength domain accounts for all contributions of the demand on a structural system, as well as its capacity to endure these demands with respect to required performance objectives.
There is no practical method for a designer to quantitatively compare the level of safety provided by an analysis conducted within the time domain compared to one conducted with the strength domain. Hence, the designer should adopt one or the other exclusively for a given analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ASTM. (2016). E119-16a standard test methods for fire tests of building construction and materials. ASTM International. ASTM. (2016). E119-16a standard test methods for fire tests of building construction and materials. ASTM International.
2.
Zurück zum Zitat UL Fire Resistance Directory. (2015). Volume 1, Northbrook, IL: UL. UL Fire Resistance Directory. (2015). Volume 1, Northbrook, IL: UL.
3.
Zurück zum Zitat Reed, S. A. (1896) Work of the committee of fire-proofing tests. Journal of the Franklin Institute, 192(851), 322–335. Reed, S. A. (1896) Work of the committee of fire-proofing tests. Journal of the Franklin Institute, 192(851), 322–335.
4.
Zurück zum Zitat Andrews, Jaques and Rantoul. (1891). Tests of fireproof arches. The American Architect and Building News, 195–201. Andrews, Jaques and Rantoul. (1891). Tests of fireproof arches. The American Architect and Building News, 195–201.
5.
Zurück zum Zitat Constable, S. (1897) Comparative standard fireproof floor tests of the new york building department. The Engineering Record, 337–340; 359–363; 382–387; 402–440. Constable, S. (1897) Comparative standard fireproof floor tests of the new york building department. The Engineering Record, 337–340; 359–363; 382–387; 402–440.
6.
Zurück zum Zitat Himmelwright, A. (1898). Fireproof Construction. The Polytechnic, 167-175. Himmelwright, A. (1898). Fireproof Construction. The Polytechnic, 167-175.
7.
Zurück zum Zitat Hutton, F. (1900). Heat and heat engines. Wiley, 611pp. Hutton, F. (1900). Heat and heat engines. Wiley, 611pp.
8.
Zurück zum Zitat Gales, J., Bisby, L., & Maluk, C. (2012). Structural fire testing – Where are we, how did we get here, and where are we going? In Proceedings of the 15th International Conference on Experimental Mechanics, Porto, Portugal, 22 pp. Gales, J., Bisby, L., & Maluk, C. (2012). Structural fire testing – Where are we, how did we get here, and where are we going? In Proceedings of the 15th International Conference on Experimental Mechanics, Porto, Portugal, 22 pp.
9.
Zurück zum Zitat Woolson, I., & Miller, R. (1912). Fire tests of floors in the United States. In International Association for Testing Materials 6th Congress, New York. Woolson, I., & Miller, R. (1912). Fire tests of floors in the United States. In International Association for Testing Materials 6th Congress, New York.
10.
Zurück zum Zitat Abraham, L. A. (1900). Himmelwright’s testimony, report of the special Committee of the Assembly, appointed to investigate the public offices and departments of the City of New York. Albany. Abraham, L. A. (1900). Himmelwright’s testimony, report of the special Committee of the Assembly, appointed to investigate the public offices and departments of the City of New York. Albany.
11.
Zurück zum Zitat Henning, G. (1905, May 2). To the editor of the New York Times. Henning, G. (1905, May 2). To the editor of the New York Times.
12.
Zurück zum Zitat Ingberg, S. (1921). Fire tests of building columns, Technologic paper 184. National Bureau of Standards, Washington Ingberg, S. (1921). Fire tests of building columns, Technologic paper 184. National Bureau of Standards, Washington
13.
Zurück zum Zitat Ingberg, S. (1928). Tests of the severity of building fires. NFPA Quarterly, 22, 43–61. Ingberg, S. (1928). Tests of the severity of building fires. NFPA Quarterly, 22, 43–61.
14.
Zurück zum Zitat Sachs, E. (1906). Fire tests with floors: a floor of reinforced concrete on the coignet system, 28pp. Sachs, E. (1906). Fire tests with floors: a floor of reinforced concrete on the coignet system, 28pp.
16.
Zurück zum Zitat Jeanes, D. (1982, April 26–30). Predicting fire endurance of steel structures. In American Society of Civil Engineers (ASCE) National Convention, Las Vegas, Nevada. Preprint 82-033. Jeanes, D. (1982, April 26–30). Predicting fire endurance of steel structures. In American Society of Civil Engineers (ASCE) National Convention, Las Vegas, Nevada. Preprint 82-033.
17.
Zurück zum Zitat Ryan, J., & Robertson, A. (1959). Proposed criteria for defining load failure of beams, floors and roof constructions during fire tests. Journal of Research of the National Bureau of Standards-C, Engineering and Instrumentation, 63(2). Ryan, J., & Robertson, A. (1959). Proposed criteria for defining load failure of beams, floors and roof constructions during fire tests. Journal of Research of the National Bureau of Standards-C, Engineering and Instrumentation, 63(2).
18.
Zurück zum Zitat ASTM E 119. (1971). Standard test methods for fire tests of building construction and materials. ASTM International. ASTM E 119. (1971). Standard test methods for fire tests of building construction and materials. ASTM International.
19.
Zurück zum Zitat ASTM E 119. (2016). Standard test methods for fire tests of building construction and materials, ASTM International. ASTM E 119. (2016). Standard test methods for fire tests of building construction and materials, ASTM International.
20.
Zurück zum Zitat UL Fire Resistance Directory. (2015). Underwriters Laboratories, Northbrook, IL. UL Fire Resistance Directory. (2015). Underwriters Laboratories, Northbrook, IL.
21.
Zurück zum Zitat American Institute of Steel Construction (AISC). (2016). AISC Standard 360-16, Appendix 4, Chicago, IL. American Institute of Steel Construction (AISC). (2016). AISC Standard 360-16, Appendix 4, Chicago, IL.
22.
Zurück zum Zitat Bailey, C., Lennon, T., & Moore, D. (1999). The behaviour of full-scale steel-framed buildings subjected to compartment fires. The Structural Engineer, 77(8). Bailey, C., Lennon, T., & Moore, D. (1999). The behaviour of full-scale steel-framed buildings subjected to compartment fires. The Structural Engineer, 77(8).
23.
Zurück zum Zitat LaMalva, K. J. (2017, August.). Reexamination of restrained vs. unrestrained. FPE Extra, Issue #20, Society of Fire Protection Engineers LaMalva, K. J. (2017, August.). Reexamination of restrained vs. unrestrained. FPE Extra, Issue #20, Society of Fire Protection Engineers
24.
Zurück zum Zitat Carter, C. J., & Alfawakhiri, F. (2013, September). Restrained or unrestrained? Modern Steel Construction. Carter, C. J., & Alfawakhiri, F. (2013, September). Restrained or unrestrained? Modern Steel Construction.
25.
Zurück zum Zitat Gross, J., et al. (2005). NIST NCSTAR 1-6B: Fire resistance tests of floor truss systems, federal building and fire safety investigation of the World Trade Center disaster. National Institute of Standards and Technology. Gross, J., et al. (2005). NIST NCSTAR 1-6B: Fire resistance tests of floor truss systems, federal building and fire safety investigation of the World Trade Center disaster. National Institute of Standards and Technology.
26.
Zurück zum Zitat ASCE/SEI 7-16. (2016). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers: Structural Engineering Institute. ASCE/SEI 7-16. (2016). Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers: Structural Engineering Institute.
27.
Zurück zum Zitat LaMalva, K. J. (2017). Chapter IV-9: Fire design. In Architects guide to structures. Routledge. LaMalva, K. J. (2017). Chapter IV-9: Fire design. In Architects guide to structures. Routledge.
28.
Zurück zum Zitat International Building Code 2015, International Code Council. International Building Code 2015, International Code Council.
29.
Zurück zum Zitat International Existing Building Code 2012, International Code Council. International Existing Building Code 2012, International Code Council.
30.
Zurück zum Zitat ASCE/SEI/SFPE 29. (2005). Standard calculation methods for structural fire protection. Structural Engineering Institute, American Society of Civil Engineers. ASCE/SEI/SFPE 29. (2005). Standard calculation methods for structural fire protection. Structural Engineering Institute, American Society of Civil Engineers.
31.
Zurück zum Zitat Harmathy, T. (1965). Ten rules of fire endurance rating. Fire Technology, 1(2). Harmathy, T. (1965). Ten rules of fire endurance rating. Fire Technology, 1(2).
32.
Zurück zum Zitat LaMalva, K. J. (2014). U.S. efforts toward standardization of structural fire engineering practice. In Proceedings of the 10 th International Conference on Performance-Based Codes and Fire Safety Design Methods, Queensland. LaMalva, K. J. (2014). U.S. efforts toward standardization of structural fire engineering practice. In Proceedings of the 10 th International Conference on Performance-Based Codes and Fire Safety Design Methods, Queensland.
33.
Zurück zum Zitat Ellingwood, B., et al. (1982). Probability based load criteria: load factors and load combinations. Journal of Structural Engineering, American Society of Civil Engineers: Structural Engineering Institute, 108(5). Ellingwood, B., et al. (1982). Probability based load criteria: load factors and load combinations. Journal of Structural Engineering, American Society of Civil Engineers: Structural Engineering Institute, 108(5).
34.
Zurück zum Zitat ISO 13824. (2009). Basis of design of structures – General principles on risk assessment of systems involving structures. International Organization for Standardization. ISO 13824. (2009). Basis of design of structures – General principles on risk assessment of systems involving structures. International Organization for Standardization.
35.
Zurück zum Zitat AISC 360. (2016). Specification for structural Steel buildings. American Institute of Steel Construction. AISC 360. (2016). Specification for structural Steel buildings. American Institute of Steel Construction.
36.
Zurück zum Zitat Ellingwood, B., & Bruce R. et al. (1980). Development of a probability based load criterion for American National Standard A58: Building code requirement for minimum design loads in buildings and other structures, NBS Special Publication 577, National Bureau of Standards. Ellingwood, B., & Bruce R. et al. (1980). Development of a probability based load criterion for American National Standard A58: Building code requirement for minimum design loads in buildings and other structures, NBS Special Publication 577, National Bureau of Standards.
37.
Zurück zum Zitat LaMalva, K. J. (2017). Structural fire protection’s shifting paradigm. Fire Protection Engineering, Issue #74, Society of Fire Protection Engineers, Q2. LaMalva, K. J. (2017). Structural fire protection’s shifting paradigm. Fire Protection Engineering, Issue #74, Society of Fire Protection Engineers, Q2.
38.
Zurück zum Zitat SFPE. (2007). Engineering guide to performance-based fire protection (2nd ed.), Society of Fire Protection Engineers. SFPE. (2007). Engineering guide to performance-based fire protection (2nd ed.), Society of Fire Protection Engineers.
39.
Zurück zum Zitat SFPE. (2009). Guidelines for peer review in the Fire protection design process. Society of Fire Protection Engineers. SFPE. (2009). Guidelines for peer review in the Fire protection design process. Society of Fire Protection Engineers.
40.
Zurück zum Zitat LaMalva, K. J. (2018, January). Developments in structural fire protection design - a U.S. perspective. The Structural Engineer, 96, Institution of Fire Engineers. LaMalva, K. J. (2018, January). Developments in structural fire protection design - a U.S. perspective. The Structural Engineer, 96, Institution of Fire Engineers.
41.
Zurück zum Zitat SFPE. (2003). Engineering guide to human behavior in fire. Society of Fire Protection Engineers. SFPE. (2003). Engineering guide to human behavior in fire. Society of Fire Protection Engineers.
42.
Zurück zum Zitat NFPA. (2013). 557: Standard for determination of fire loads for use in structural fire protection design. National Fire Protection Association. NFPA. (2013). 557: Standard for determination of fire loads for use in structural fire protection design. National Fire Protection Association.
43.
Zurück zum Zitat SFPE S.01. (2011). Engineering standard on calculating Fire exposures to structures. Society of Fire Protection Engineers. SFPE S.01. (2011). Engineering standard on calculating Fire exposures to structures. Society of Fire Protection Engineers.
44.
Zurück zum Zitat SFPE. (2014). S.02: Engineering standard on the development and use of methodologies to predict the thermal performance of structural and fire resistive assemblies. Society of Fire Protection Engineers. SFPE. (2014). S.02: Engineering standard on the development and use of methodologies to predict the thermal performance of structural and fire resistive assemblies. Society of Fire Protection Engineers.
45.
Zurück zum Zitat Eurocode 1. (2001). Basis of design and actions on structures, part 1.2: Actions on structures – Actions on structures exposed to fire, ENV 1991-1-2. CEN. Eurocode 1. (2001). Basis of design and actions on structures, part 1.2: Actions on structures – Actions on structures exposed to fire, ENV 1991-1-2. CEN.
46.
Zurück zum Zitat SFPE G.06. (2011). Engineering guidelines for substantiating a fire model for a given application. Society of Fire Protection Engineers. SFPE G.06. (2011). Engineering guidelines for substantiating a fire model for a given application. Society of Fire Protection Engineers.
47.
Zurück zum Zitat Ellingwood, B., & Corotis, R.. (1991). Load combinations for buildings exposed to fires. Engineering Journal. American Institute of Steel Construction. Ellingwood, B., & Corotis, R.. (1991). Load combinations for buildings exposed to fires. Engineering Journal. American Institute of Steel Construction.
48.
Zurück zum Zitat NFPA. (2021). 5000: Building construction and safety code. National Fire Protection Association. Quincy, MA. NFPA. (2021). 5000: Building construction and safety code. National Fire Protection Association. Quincy, MA.
49.
Zurück zum Zitat NFPA. (2021). 101: Life safety code. National Fire Protection Association, Quincy, MA. NFPA. (2021). 101: Life safety code. National Fire Protection Association, Quincy, MA.
50.
Zurück zum Zitat ASCE/SEI. (2018). Manual of practice no. 138: Structural fire engineering. American Society of Civil Engineers: Structural Engineering Institute, Reston, VA. ASCE/SEI. (2018). Manual of practice no. 138: Structural fire engineering. American Society of Civil Engineers: Structural Engineering Institute, Reston, VA.
52.
Zurück zum Zitat Buchanan, A., & Abu, A. (2017). Structural design for fire safety (2nd ed.). Wiley. Buchanan, A., & Abu, A. (2017). Structural design for fire safety (2nd ed.). Wiley.
53.
Zurück zum Zitat Carlson, C., Selvaggio, S., & Gustaferro, A. (1965). A review of studies of the effects of restraint on the fire resistance of prestressed concrete. Portland Cement Association Research Department Bulletin 206, Portland Cement Association (USA) Carlson, C., Selvaggio, S., & Gustaferro, A. (1965). A review of studies of the effects of restraint on the fire resistance of prestressed concrete. Portland Cement Association Research Department Bulletin 206, Portland Cement Association (USA)
54.
Zurück zum Zitat Wang, Y., Burgess, I., Wald, F., & Gillie, M. (2012). Performance-based fire engineering of structures. CRC Press. Wang, Y., Burgess, I., Wald, F., & Gillie, M. (2012). Performance-based fire engineering of structures. CRC Press.
55.
Zurück zum Zitat British Steel. (1999). The behaviour of multi-storey steel framed buildings in fire. Swinden Technology Centre. British Steel. (1999). The behaviour of multi-storey steel framed buildings in fire. Swinden Technology Centre.
56.
Zurück zum Zitat Purkiss, J., & Li, L. (2014). Fire safety engineering design of structures. CRC Press. Purkiss, J., & Li, L. (2014). Fire safety engineering design of structures. CRC Press.
57.
Zurück zum Zitat Bisby, L. (2016). Structural mechanics, SFPE handbook of fire protection engineering (5th ed., pp. 255–276).CrossRef Bisby, L. (2016). Structural mechanics, SFPE handbook of fire protection engineering (5th ed., pp. 255–276).CrossRef
58.
Zurück zum Zitat CEN. (2005b). Eurocode 3: Design of steel structures - Part 1-2: General rules – Structural fire design. EN 1993-1-2. European Committee for Standardization. CEN. (2005b). Eurocode 3: Design of steel structures - Part 1-2: General rules – Structural fire design. EN 1993-1-2. European Committee for Standardization.
59.
Zurück zum Zitat Wang, Y. C. (2002). Steel and composite structures: Behaviour and design for fire safety. Spoon Press.CrossRef Wang, Y. C. (2002). Steel and composite structures: Behaviour and design for fire safety. Spoon Press.CrossRef
Metadaten
Titel
The Fire-Resistive Principle
verfasst von
Kevin LaMalva
John Gales
Anthony Abu
Luke Bisby
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-77123-2_2