Skip to main content

2012 | OriginalPaper | Buchkapitel

The Fluid Dynamics of Feeding In the Upside-Down Jellyfish

verfasst von : Christina Hamlet, Laura A. Miller, Terry Rodriguez, Arvind Santhanakrishnan

Erschienen in: Natural Locomotion in Fluids and on Surfaces

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The jellyfish has been the subject of numerous mathematical and physical studies ranging from the discovery of reentry phenomenon in electrophysiology to the development of axisymmetric methods for solving fluid-structure interaction problems. In the area of biologically inspired design, the jellyfish serves as a simple case study for understanding the fluid dynamics of unsteady propulsion with the goal of improving the design of underwater vehicles. In addition to locomotion, the study of jellyfish fluid dynamics could also lead to innovations in the design of filtration and sensing systems since an additional purpose of bell pulsations is to bring fluid to the organism for the purposes of feeding and nutrient exchange. The upside-down jellyfish, Cassiopea spp., is particularly well suited for feeding studies since it spends most of its time resting on the seafloor with its oral arms extended upward, pulsing to generate currents used for feeding and waste removal. In this paper, experimental measurements of the bulk flow fields generated by these organisms as well as the results from supporting numerical simulations are reviewed. Contraction, expansion, and pause times over the course of many contraction cycles are reported, and the effects of these parameters on the resulting fluid dynamics are explored. Of particular interest is the length of the rest period between the completion of bell expansion and the contraction of the next cycle. This component of the pulse cycle can be modeled as a Markov process. The discrete time Markov chain model can then be used to simulate cycle times using the distributions found empirically. Numerical simulations are used to explore the effects of the pulse characteristics on the fluid flow generated by the jellyfish. Preliminary results suggest that pause times have significant implications for the efficiency of particle capture and exchange.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
[1].
Zurück zum Zitat Arai MN (1997) A functional biology of scyphozoa. Chapman and Hall, London Arai MN (1997) A functional biology of scyphozoa. Chapman and Hall, London
[3].
Zurück zum Zitat Bigelow RP (1900) The anatomy and development of Cassiopeia xamachana. Boston Soc Nat Hist Mem 5:191–236 Bigelow RP (1900) The anatomy and development of Cassiopeia xamachana. Boston Soc Nat Hist Mem 5:191–236
[4].
Zurück zum Zitat Brown GO (2002) Henry Darcy and the making of a law. Water Resour Res Volume 38, Issue 7, pp. 11–1.CrossRef Brown GO (2002) Henry Darcy and the making of a law. Water Resour Res Volume 38, Issue 7, pp. 11–1.CrossRef
[5].
Zurück zum Zitat Colin SP, Costello JH (2002) Morphology, swimming performance, and propulsive mode of six co-occurring hydromedusae. J Exp Biol 205:427–437 Colin SP, Costello JH (2002) Morphology, swimming performance, and propulsive mode of six co-occurring hydromedusae. J Exp Biol 205:427–437
[6].
Zurück zum Zitat Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121:327–334CrossRef Costello JH, Colin SP (1994) Morphology, fluid motion and predation by the scyphomedusa Aurelia aurita. Mar Biol 121:327–334CrossRef
[7].
Zurück zum Zitat Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127:265–290CrossRef Costello JH, Colin SP, Dabiri JO (2008) Medusan morphospace: phylogenetic constraints, biomechanical solutions, and ecological consequences. Invertebr Biol 127:265–290CrossRef
[8].
Zurück zum Zitat Daniel TL (1983) Mechanics and energetics of medusan jet propulsion. Can J Zool 61:1406–1420CrossRef Daniel TL (1983) Mechanics and energetics of medusan jet propulsion. Can J Zool 61:1406–1420CrossRef
[9].
Zurück zum Zitat Daniel TL (1984) Unsteady aspects of aquatic locomotion. Am Zool 24:121–134 Daniel TL (1984) Unsteady aspects of aquatic locomotion. Am Zool 24:121–134
[10].
Zurück zum Zitat Dabiri JO, Colin SP, Costello JH, Gharib M (2005) Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 208:1257–1265CrossRef Dabiri JO, Colin SP, Costello JH, Gharib M (2005) Flow patterns generated by oblate medusan jellyfish: field measurements and laboratory analyses. J Exp Biol 208:1257–1265CrossRef
[11].
Zurück zum Zitat Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming jellyfish exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033CrossRef Dabiri JO, Colin SP, Costello JH (2006) Fast-swimming jellyfish exploit velar kinematics to form an optimal vortex wake. J Exp Biol 209:2025–2033CrossRef
[12].
Zurück zum Zitat Dabiri JO, Colin SP, Costello JH (2007) Morphological diversity of medusan lineages is constrained by animal-fluid interactions. J Exp Biol 210:1868–1873CrossRef Dabiri JO, Colin SP, Costello JH (2007) Morphological diversity of medusan lineages is constrained by animal-fluid interactions. J Exp Biol 210:1868–1873CrossRef
[14].
Zurück zum Zitat Fogelson AL (1984) A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J Comput Phys 56:111–134MathSciNetMATHCrossRef Fogelson AL (1984) A mathematical model and numerical method for studying platelet adhesion and aggregation during blood clotting. J Comput Phys 56:111–134MathSciNetMATHCrossRef
[15].
Zurück zum Zitat Hamlet C, Santhanakrishnan A, Miller LA (2011) A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea spp. J Exp Biol 214:1911–1921CrossRef Hamlet C, Santhanakrishnan A, Miller LA (2011) A numerical study of the effects of bell pulsation dynamics and oral arms on the exchange currents generated by the upside-down jellyfish Cassiopea spp. J Exp Biol 214:1911–1921CrossRef
[16].
Zurück zum Zitat Hayward RT (2007) Modeling experiments on pacemaker interactions in scyphomedusae. Master’s thesis, University of North Carolina at Wilmington, Department of Biology and Marine Biology Hayward RT (2007) Modeling experiments on pacemaker interactions in scyphomedusae. Master’s thesis, University of North Carolina at Wilmington, Department of Biology and Marine Biology
[17].
Zurück zum Zitat Heller HC, Sadava DE, Orians GH (2006) Life, the science of biology. W.H. Freeman, New York Heller HC, Sadava DE, Orians GH (2006) Life, the science of biology. W.H. Freeman, New York
[18].
Zurück zum Zitat Herschlag G, Miller LA (2011) Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J Theor Biol 285:84–95CrossRef Herschlag G, Miller LA (2011) Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish. J Theor Biol 285:84–95CrossRef
[19].
Zurück zum Zitat Jung E, Peskin CS (2001) Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM J Sci Comput 23:19–45MathSciNetMATHCrossRef Jung E, Peskin CS (2001) Two-dimensional simulations of valveless pumping using the immersed boundary method. SIAM J Sci Comput 23:19–45MathSciNetMATHCrossRef
[20].
[21].
Zurück zum Zitat Larson RJ (1991) Diet, prey selection and daily ration of Stomolophus meleagris, a filter- feeding scyphomedusa from the NE Gulf of Mexico. Estuar Coast Shelf Sci 32:511–525MathSciNetCrossRef Larson RJ (1991) Diet, prey selection and daily ration of Stomolophus meleagris, a filter- feeding scyphomedusa from the NE Gulf of Mexico. Estuar Coast Shelf Sci 32:511–525MathSciNetCrossRef
[22].
Zurück zum Zitat Lim S, Peskin CS (2004) Simulations of the whirling instability by the immersed boundary method. SIAM J Sci Comput 25:2066–2083MathSciNetMATHCrossRef Lim S, Peskin CS (2004) Simulations of the whirling instability by the immersed boundary method. SIAM J Sci Comput 25:2066–2083MathSciNetMATHCrossRef
[23].
Zurück zum Zitat Lipinski D, Mohseni K (2009) Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2436–2447CrossRef Lipinski D, Mohseni K (2009) Flow structures and fluid transport for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2436–2447CrossRef
[24].
Zurück zum Zitat McHenry MJ, Jed J (2003) The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish Aurelia aurita. J Exp Biol 206:4125–4137CrossRef McHenry MJ, Jed J (2003) The ontogenetic scaling of hydrodynamics and swimming performance in jellyfish Aurelia aurita. J Exp Biol 206:4125–4137CrossRef
[25].
Zurück zum Zitat Miller LA, Peskin CS (2004) When vortices stick: an aerodynamic transition in tiny insect flight. J Exp Biol 207:3073–3088CrossRef Miller LA, Peskin CS (2004) When vortices stick: an aerodynamic transition in tiny insect flight. J Exp Biol 207:3073–3088CrossRef
[26].
Zurück zum Zitat Miller LA, Peskin CS (2009) Flexible clap and fling in tiny insect flight. J Exp Biol 212:3076-3090CrossRef Miller LA, Peskin CS (2009) Flexible clap and fling in tiny insect flight. J Exp Biol 212:3076-3090CrossRef
[27].
Zurück zum Zitat Omoto C, Dillon RH, Fauci LJ, Yang X (2007) Fluid dynamic models of flagellar and ciliary beating. Ann N Y Acad Sci 1101:494–505CrossRef Omoto C, Dillon RH, Fauci LJ, Yang X (2007) Fluid dynamic models of flagellar and ciliary beating. Ann N Y Acad Sci 1101:494–505CrossRef
[29].
Zurück zum Zitat Peskin CS, McQueen DM (1996) Fluid dynamics of the heart and its valves. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology, 2nd edn. Prentice-Hall, New Jersey Peskin CS, McQueen DM (1996) Fluid dynamics of the heart and its valves. In: Othmer HG, Adler FR, Lewis MA, Dallon JC (eds) Case studies in mathematical modeling: ecology, physiology, and cell biology, 2nd edn. Prentice-Hall, New Jersey
[30].
Zurück zum Zitat Peskin CS, Kramer PR, Atzberger PJ (2008) On the foundations of the stochastic immersed boundary method. Comput Method Appl Mech Eng 197:2232–2249MathSciNetMATHCrossRef Peskin CS, Kramer PR, Atzberger PJ (2008) On the foundations of the stochastic immersed boundary method. Comput Method Appl Mech Eng 197:2232–2249MathSciNetMATHCrossRef
[31].
Zurück zum Zitat Sahin M, Mohseni K, Colin SP (2009) The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2656-2667CrossRef Sahin M, Mohseni K, Colin SP (2009) The numerical comparison of flow patterns and propulsive performances for the hydromedusae Sarsia tubulosa and Aequorea victoria. J Exp Biol 212:2656-2667CrossRef
[32].
Zurück zum Zitat Santhanakrishnan A, Hamlet C, Dollinger M, Colin S, Miller LA Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. J Exp Biol. 215: 2369–2381 Santhanakrishnan A, Hamlet C, Dollinger M, Colin S, Miller LA Flow structure and transport characteristics of feeding and exchange currents generated by upside-down Cassiopea jellyfish. J Exp Biol. 215: 2369–2381
[33].
Zurück zum Zitat Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Canad J Zool 80:1654–1669CrossRef Satterlie RA (2002) Neuronal control of swimming in jellyfish: a comparative story. Canad J Zool 80:1654–1669CrossRef
[34].
Zurück zum Zitat Stockie JM (2009) Modelling and simulation of porous immersed boundaries. Comput Struct 87:701–709CrossRef Stockie JM (2009) Modelling and simulation of porous immersed boundaries. Comput Struct 87:701–709CrossRef
[35].
Zurück zum Zitat Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72CrossRef Templeman MA, Kingsford MJ (2010) Trace element accumulation in Cassiopea sp. (Scyphozoa) from urban marine environments in Australia. Mar Environ Res 69:63–72CrossRef
[36].
Zurück zum Zitat Todd BD, Thornhill DJ, Fitt WK (2006) Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Mar Poll Bull. 52:515–521CrossRef Todd BD, Thornhill DJ, Fitt WK (2006) Patterns of inorganic phosphate uptake in Cassiopea xamachana: a bioindicator species. Mar Poll Bull. 52:515–521CrossRef
[37].
Zurück zum Zitat Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162CrossRef Verde EA, McCloskey LR (1998) Production, respiration, and photophysiology of the mangrove jellyfish Cassiopea xamachana symbiotic with zooxanthellae: effect of jellyfish size and season. Mar Ecol Prog Ser 168:147–162CrossRef
[38].
Zurück zum Zitat Welsh DT, Dunn RJK, Meziane T (2009) Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635:351–362CrossRef Welsh DT, Dunn RJK, Meziane T (2009) Oxygen and nutrient dynamics of the upside down jellyfish (Cassiopea sp.) and its influence on benthic nutrient exchanges and primary production. Hydrobiologia 635:351–362CrossRef
Metadaten
Titel
The Fluid Dynamics of Feeding In the Upside-Down Jellyfish
verfasst von
Christina Hamlet
Laura A. Miller
Terry Rodriguez
Arvind Santhanakrishnan
Copyright-Jahr
2012
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4614-3997-4_3