Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 11/2018

06.09.2018

The Friction Stress of the Hall–Petch Relationship of Pure Mg and Solid Solutions of Al, Zn, and Gd

verfasst von: D. Nagarajan, C. H. Cáceres

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Temperature and solute concentration effects on the friction stress, σo, of cast (texture-free) polycrystals of pure Mg, and of Mg-Al, -Zn and -Gd binary solid solutions are discussed using phenomenological arguments. The temperature effects on the pure metal suggest that σo relates to the ratio between the CRSS of prism and basal slip, against early suggestions that it should only relate to the CRSS for basal slip. Solid solution softening upon prism slip accounts for the minima in σo at ~ 0.5 at. pct in Mg-Zn and Mg-Gd alloys. In the concentrated alloys, solute-specific hardening effects upon slip and twinning lead to diverging behaviors: in Mg-Al and Mg-Zn, σo remains below that of pure Mg. Strong short-range order by Gd leads to a steep monotonic increase, and to a value larger in compression than in tension due to the activation of {10-11} twinning at high concentrations. The negative σo of the dilute Mg-Zn alloys is an artifact created by the tension/compression asymmetry stemming from the polar character of {10-12} twinning.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The data sets of Mg, Mg-Zn, and Mg-Gd in Figures 1 through 3 were collected in the present authors’ experimental facilities using the same molds, casting and testing techniques. Still, the data presented significant scatter, as can be appreciated by the variation in σo and k for pure Mg. A large experimental scatter seems to be a feature of Mg and its alloys, likely to be connected with the plastic anisotropy. See Reference [2] for a more detailed discussion.
 
2
Ono et al.’s specimens[23] were cut from rolled and recrystallized Mg, and hence they were expected to have texture. This fact may partly account for some of the discrepancy in strength values in Figure 4.
 
3
Mecking et al.[25] pointed out that preferential strain hardening of the softer slip systems decreases the anisotropy of plastically anisotropic materials as the material is deformed. (A similar, only more empirical, analysis was recently put forward by Hutchinson and Barnett.[26]) Mecking et al.’s analysis was used by Caceres and Lukac[21] to estimate the Taylor factor of Mg polycrystals used for Eq. [3] and in Figure 4.
 
4
Gharghouri et al.[28] pointed out that the onset of deformation through basal slip leading to pileups on grain boundaries should lead to a periodic long range stress with a wave length equal to the polycrystal’s grain size.
 
5
Akhtar and Teghtsoonian[22] argued that the solid solution softening stems from the creation of kinks in the edge components of the dislocations lying on the prism planes. The kinks so created facilitate thermally activated slip of otherwise straight and virtually immobile dislocations pinned down by the Peierls–Nabarro force. As such, they argued it should be a general, i.e., independent of the c/a ratio, valence, or atomic size, solid solution effect.
 
6
Note that unlike the argument by which the profuse activation of twinning inside the hard oriented grains lowers the k-value through the increased slip flexibility (cf. section on the stress intensity factor), the t/c asymmetry is a geometric effect reflecting the proportion of grains in which twinning is activated for given stress, i.e., the number density of twins in the grains involved is not necessarily affected. That is, the increased amount of twinning in compression is not expected to reduce the k-value in comparison with tension (see Eqs. [6] through [8]).
 
7
The assumption k*=0 for the twinning grains can only represent a transient situation, as eventually plastic strain will involve all, twinning and non-twinning, grains in the aggregate. When this happens, due to twinning’s grain partition effects, the twinned grains will appear to be smaller, adding to the overall strain hardening through an enhanced HallPetch effect. The HallPetch hardening due to grain partition through twinning has been discussed elsewhere,[37] and shown to be relatively small because of the relatively large size of twins in Mg, in turn, stemming from the small twinning shear strain involved.
 
8
Experiments by Baker and Schulson[58] thoroughly reviewed by Nabarro[59] (p. 284) showed that in alloys that can be reversibly ordered, ordering leads to larger values of k.
 
Literatur
1.
Zurück zum Zitat C.H. Caceres, G.E. Mann, and J.R. Griffiths: Metall. Mater. Trans. A 2011, vol. 42A, pp. 1950-59.CrossRef C.H. Caceres, G.E. Mann, and J.R. Griffiths: Metall. Mater. Trans. A 2011, vol. 42A, pp. 1950-59.CrossRef
2.
Zurück zum Zitat D. Nagarajan, C.H. Caceres, and J.R. Griffiths: Metall. Mater. Trans. A 2016, vol. 47A, pp. 5401-08.CrossRef D. Nagarajan, C.H. Caceres, and J.R. Griffiths: Metall. Mater. Trans. A 2016, vol. 47A, pp. 5401-08.CrossRef
3.
Zurück zum Zitat J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, and G. Wang: J. Mater. Sci. 2005, vol. 40, pp. 5999-6005.CrossRef J.P. Weiler, J.T. Wood, R.J. Klassen, R. Berkmortel, and G. Wang: J. Mater. Sci. 2005, vol. 40, pp. 5999-6005.CrossRef
4.
Zurück zum Zitat A. Akhtar and E. Teghtsoonian: Trans. Jpn. Inst. Metals 1968, vol. 9, supplement, pp. 692-97. A. Akhtar and E. Teghtsoonian: Trans. Jpn. Inst. Metals 1968, vol. 9, supplement, pp. 692-97.
5.
Zurück zum Zitat E.W. Kelley and W.F. Hosford: Trans. Metall. Soc. AIME 1968, vol. 242, pp. 5-13. E.W. Kelley and W.F. Hosford: Trans. Metall. Soc. AIME 1968, vol. 242, pp. 5-13.
6.
Zurück zum Zitat S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater. 2001, vol. 49, pp. 4277-89.CrossRef S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater. 2001, vol. 49, pp. 4277-89.CrossRef
7.
Zurück zum Zitat C.H. Cáceres and A. Blake: Phys. Status Solidi 2002, vol. 194, pp. 147-58.CrossRef C.H. Cáceres and A. Blake: Phys. Status Solidi 2002, vol. 194, pp. 147-58.CrossRef
8.
Zurück zum Zitat C.H. Cáceres and D.M. Rovera: J. Light Metals 2001, vol. 1/3, pp. 151-56.CrossRef C.H. Cáceres and D.M. Rovera: J. Light Metals 2001, vol. 1/3, pp. 151-56.CrossRef
9.
Zurück zum Zitat S. Abaspour and C.H. Caceres: Metall. Mater. Trans. A 2015, vol. 46A, pp. 5972-88.CrossRef S. Abaspour and C.H. Caceres: Metall. Mater. Trans. A 2015, vol. 46A, pp. 5972-88.CrossRef
10.
Zurück zum Zitat S. Abaspour and C.H. Caceres: Metall. Mater. Trans. A 2016, vol. 47A, pp. 1313-21.CrossRef S. Abaspour and C.H. Caceres: Metall. Mater. Trans. A 2016, vol. 47A, pp. 1313-21.CrossRef
11.
Zurück zum Zitat S. Abaspour, V. Zambelli, M. Dargusch, and C.H. Cáceres: Mater. Sci. Eng. A 2016, vol. 673, pp. 114-21.CrossRef S. Abaspour, V. Zambelli, M. Dargusch, and C.H. Cáceres: Mater. Sci. Eng. A 2016, vol. 673, pp. 114-21.CrossRef
12.
13.
Zurück zum Zitat R.W. Armstrong, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 1-31. R.W. Armstrong, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 1-31.
14.
Zurück zum Zitat T.N. Baker, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 235-73. T.N. Baker, in: T.N. Baker (Ed.) Yield, Flow and Fracture of Polycrystals, Applied Science Publishers, London, 1983, pp. 235-73.
15.
Zurück zum Zitat R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Philos. Mag. 1962, vol. 7, pp. 45-58.CrossRef R. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch: Philos. Mag. 1962, vol. 7, pp. 45-58.CrossRef
17.
Zurück zum Zitat R.W. Armstrong, in: J.C.M. Li (Ed.) Mechanical Properties of Nanocrystalline Materials, Pan Stanford Publishing, C/o World Scientific Publishing Co., Inc., Hackensack, 2009. R.W. Armstrong, in: J.C.M. Li (Ed.) Mechanical Properties of Nanocrystalline Materials, Pan Stanford Publishing, C/o World Scientific Publishing Co., Inc., Hackensack, 2009.
18.
Zurück zum Zitat F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. Am. Soc. Metals 1956, vol. 48, pp. 986-1002. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. Am. Soc. Metals 1956, vol. 48, pp. 986-1002.
19.
Zurück zum Zitat F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. Metall. Soc. AIME 1956, vol. 206, pp. 589-93. F.E. Hauser, P.R. Landon, and J.E. Dorn: Trans. Metall. Soc. AIME 1956, vol. 206, pp. 589-93.
20.
Zurück zum Zitat A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, vol. 17, pp. 1339-49.CrossRef A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, vol. 17, pp. 1339-49.CrossRef
21.
Zurück zum Zitat C.H. Cáceres and P. Lukác: Philos. Mag. A 2008, vol. 88, pp. 977-89.CrossRef C.H. Cáceres and P. Lukác: Philos. Mag. A 2008, vol. 88, pp. 977-89.CrossRef
22.
Zurück zum Zitat A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, vol. 17, pp. 1351-56.CrossRef A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, vol. 17, pp. 1351-56.CrossRef
23.
Zurück zum Zitat N. Ono, R. Nowak, and S. Miura: Mater. Lett. 2004, vol. 58, pp. 39-43.CrossRef N. Ono, R. Nowak, and S. Miura: Mater. Lett. 2004, vol. 58, pp. 39-43.CrossRef
24.
Zurück zum Zitat A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew: Mater. Sci. Eng. A 2008, vol. 486, pp. 545-55.CrossRef A. Jain, O. Duygulu, D.W. Brown, C.N. Tomé, and S.R. Agnew: Mater. Sci. Eng. A 2008, vol. 486, pp. 545-55.CrossRef
25.
Zurück zum Zitat H. Mecking, U.F. Kocks, and C. Hartig: Scr. Mater. 1996, vol. 35, pp. 465-71.CrossRef H. Mecking, U.F. Kocks, and C. Hartig: Scr. Mater. 1996, vol. 35, pp. 465-71.CrossRef
26.
Zurück zum Zitat W.B. Hutchinson and M.R. Barnett: Scr. Mater. 2010, vol. 63, pp. 737-40.CrossRef W.B. Hutchinson and M.R. Barnett: Scr. Mater. 2010, vol. 63, pp. 737-40.CrossRef
28.
Zurück zum Zitat M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Philos. Mag. 1999, vol. 79, pp. 1671-96.CrossRef M.A. Gharghouri, G.C. Weatherly, J.D. Embury, and J. Root: Philos. Mag. 1999, vol. 79, pp. 1671-96.CrossRef
29.
Zurück zum Zitat S.R. Agnew, D.W. Brown, and C.N. Tome: Acta Mater. 2006, vol. 54, pp. 4841-52.CrossRef S.R. Agnew, D.W. Brown, and C.N. Tome: Acta Mater. 2006, vol. 54, pp. 4841-52.CrossRef
30.
Zurück zum Zitat S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scr. Mater. 2003, vol. 48, pp. 1003-08.CrossRef S.R. Agnew, C.N. Tomé, D.W. Brown, T.M. Holden, and S.C. Vogel: Scr. Mater. 2003, vol. 48, pp. 1003-08.CrossRef
31.
Zurück zum Zitat U.F. Kocks and D.G. Westlake: Trans. AIME 1967, vol. 239, pp. 1107-09. U.F. Kocks and D.G. Westlake: Trans. AIME 1967, vol. 239, pp. 1107-09.
32.
33.
Zurück zum Zitat O. Muránsky, D.G. Carr, P. Sittner, and E.C. Oliver: Int. J. Plast. 2009, vol. 25, pp. 1107-27.CrossRef O. Muránsky, D.G. Carr, P. Sittner, and E.C. Oliver: Int. J. Plast. 2009, vol. 25, pp. 1107-27.CrossRef
34.
Zurück zum Zitat D.V. Wilson and J.A. Chapman: Philos. Mag. 1963, vol. 8, pp. 1543-51.CrossRef D.V. Wilson and J.A. Chapman: Philos. Mag. 1963, vol. 8, pp. 1543-51.CrossRef
35.
Zurück zum Zitat D.V. Wilson: J. Inst. Metals 1966, vol. 98, pp. 133-43. D.V. Wilson: J. Inst. Metals 1966, vol. 98, pp. 133-43.
36.
Zurück zum Zitat G. Sambasiva Rao and Y.V.R.K. Prasad: Metall. Trans.A 1982, vol. 13A, pp. 2219-26.CrossRef G. Sambasiva Rao and Y.V.R.K. Prasad: Metall. Trans.A 1982, vol. 13A, pp. 2219-26.CrossRef
37.
Zurück zum Zitat C.H. Cáceres, P. Lukác, and A. Blake: Philos. Mag. A 2008, vol. 88, pp. 991-1003.CrossRef C.H. Cáceres, P. Lukác, and A. Blake: Philos. Mag. A 2008, vol. 88, pp. 991-1003.CrossRef
38.
Zurück zum Zitat G.-W. Chang, S.-Y. Chen, C. Zhou, X.-D. Yue, and Y.-h. Qi: Trans. Nonferrous Metals Soc. China 2010, vol. 20, pp. 289-93.CrossRef G.-W. Chang, S.-Y. Chen, C. Zhou, X.-D. Yue, and Y.-h. Qi: Trans. Nonferrous Metals Soc. China 2010, vol. 20, pp. 289-93.CrossRef
39.
Zurück zum Zitat D. Kuhlmann-Wilsdorf: Metall. Mater. Trans. A 2004, vol. 35A, pp. 369-418.CrossRef D. Kuhlmann-Wilsdorf: Metall. Mater. Trans. A 2004, vol. 35A, pp. 369-418.CrossRef
40.
Zurück zum Zitat C.H. Cáceres and A.H. Blake: Mater. Sci. Eng. A 2007, vol. 462, pp. 193-96.CrossRef C.H. Cáceres and A.H. Blake: Mater. Sci. Eng. A 2007, vol. 462, pp. 193-96.CrossRef
41.
Zurück zum Zitat C.H. Cáceres, J.R. Griffiths, C.J. Davidson, and C.L. Newton: Mater. Sci. Eng. 2002, vol. 325, pp. 344-55.CrossRef C.H. Cáceres, J.R. Griffiths, C.J. Davidson, and C.L. Newton: Mater. Sci. Eng. 2002, vol. 325, pp. 344-55.CrossRef
42.
Zurück zum Zitat U.F. Kocks: P. Haasen, V. Gerold and G. Kostorz (Ed.) Strength of Metals and Alloys (ICSMA-5), Aachen, DR; Pergamon Press, New York, 1980, pp. 1661-80. U.F. Kocks: P. Haasen, V. Gerold and G. Kostorz (Ed.) Strength of Metals and Alloys (ICSMA-5), Aachen, DR; Pergamon Press, New York, 1980, pp. 1661-80.
43.
44.
Zurück zum Zitat S. Ando and H. Tonda: Mater. Sci. Forum 2003, vol. 419-422, pp. 87-92.CrossRef S. Ando and H. Tonda: Mater. Sci. Forum 2003, vol. 419-422, pp. 87-92.CrossRef
45.
Zurück zum Zitat S. Ando and H. Tonda: Mater. Trans. (JIM) 2000, vol. 41, pp. 1188-91.CrossRef S. Ando and H. Tonda: Mater. Trans. (JIM) 2000, vol. 41, pp. 1188-91.CrossRef
46.
Zurück zum Zitat B.L. Wu, Y.H. Zhao, X.H. Du, Y.D. Zhang, F. Wagner, and C. Esling: Mater. Sci. Eng. A 2010, vol. 527, pp. 4334-40.CrossRef B.L. Wu, Y.H. Zhao, X.H. Du, Y.D. Zhang, F. Wagner, and C. Esling: Mater. Sci. Eng. A 2010, vol. 527, pp. 4334-40.CrossRef
47.
Zurück zum Zitat Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, and W.A. Curtin: Science 2018, vol. 359, pp. 447-52.CrossRef Z. Wu, R. Ahmad, B. Yin, S. Sandlöbes, and W.A. Curtin: Science 2018, vol. 359, pp. 447-52.CrossRef
48.
Zurück zum Zitat A. Seeger, in: J.C. Fisher, W.G. Johnston, R. Thomson and T. Vreeland (Ed.) Dislocations and Mechanical Properties of Crystals, Chapman and Hall, London, 1957), pp. 243-329. A. Seeger, in: J.C. Fisher, W.G. Johnston, R. Thomson and T. Vreeland (Ed.) Dislocations and Mechanical Properties of Crystals, Chapman and Hall, London, 1957), pp. 243-329.
49.
Zurück zum Zitat B. Raeisinia, S.R. Agnew, and A. Akhtar: Metall. Mater. Trans. A 2011, vol. 42A, pp. 1418-4130.CrossRef B. Raeisinia, S.R. Agnew, and A. Akhtar: Metall. Mater. Trans. A 2011, vol. 42A, pp. 1418-4130.CrossRef
50.
Zurück zum Zitat S. Graff, W. Brocks, and D. Steglich: Int. J. Plast. 2007, vol. 23, pp. 1957-78.CrossRef S. Graff, W. Brocks, and D. Steglich: Int. J. Plast. 2007, vol. 23, pp. 1957-78.CrossRef
51.
Zurück zum Zitat G.E. Mann, T. Sumitomo, C.H. Cáceres, and J.R. Griffiths: Mater. Sci. Eng. A 2007, vol. 456, pp. 138-46.CrossRef G.E. Mann, T. Sumitomo, C.H. Cáceres, and J.R. Griffiths: Mater. Sci. Eng. A 2007, vol. 456, pp. 138-46.CrossRef
53.
Zurück zum Zitat D. Nagarajan, C.H. Caceres, and J.R. Griffiths: Acta Phys. Polonica A 2012, vol. 122, pp. 501-04.CrossRef D. Nagarajan, C.H. Caceres, and J.R. Griffiths: Acta Phys. Polonica A 2012, vol. 122, pp. 501-04.CrossRef
54.
Zurück zum Zitat C.H. Cáceres, T. Sumitomo, and M. Veidt: Acta Mater. 2003, vol. 51, pp. 6211-18.CrossRef C.H. Cáceres, T. Sumitomo, and M. Veidt: Acta Mater. 2003, vol. 51, pp. 6211-18.CrossRef
55.
Zurück zum Zitat A. Kelly: Strong Solids, Clarendon Press, Oxford, 1973. A. Kelly: Strong Solids, Clarendon Press, Oxford, 1973.
56.
57.
Zurück zum Zitat J.D. Embury, in: A. Kelly and R.B. Nicholson (Ed.) Strengthening Methods in Crystals, Elsevier, London, 1972, pp. 331-402. J.D. Embury, in: A. Kelly and R.B. Nicholson (Ed.) Strengthening Methods in Crystals, Elsevier, London, 1972, pp. 331-402.
58.
59.
Zurück zum Zitat F.R.N. Nabarro and F. de Villiers: Physics of Creep and Creep-Resistant Alloys, Taylor & Francis, London, 1995. F.R.N. Nabarro and F. de Villiers: Physics of Creep and Creep-Resistant Alloys, Taylor & Francis, London, 1995.
60.
Zurück zum Zitat K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig: Scr. Mater. 2010, vol. 63, pp. 725-30.CrossRef K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, and D. Letzig: Scr. Mater. 2010, vol. 63, pp. 725-30.CrossRef
61.
Zurück zum Zitat N. Stanford, D. Atwell, and M.R. Barnett: Acta Mater. 2010, vol. 58, pp. 6773-83.CrossRef N. Stanford, D. Atwell, and M.R. Barnett: Acta Mater. 2010, vol. 58, pp. 6773-83.CrossRef
62.
Zurück zum Zitat N. Stanford and M.R. Barnett: Mater. Sci. Eng. A 2008, vol. 496, pp. 399-408.CrossRef N. Stanford and M.R. Barnett: Mater. Sci. Eng. A 2008, vol. 496, pp. 399-408.CrossRef
63.
Zurück zum Zitat J.D. Robson, A.M. Twier, G.W. Lorimer, and P. Rogers: Mater. Sci. Eng. A 2011, vol. 528, pp. 7247-56.CrossRef J.D. Robson, A.M. Twier, G.W. Lorimer, and P. Rogers: Mater. Sci. Eng. A 2011, vol. 528, pp. 7247-56.CrossRef
64.
Zurück zum Zitat J. Zhang, M. Liu, Y. Dou, and G. Liu: Metall. Mater. Trans. A 2014, vol. 45A, pp. 5499-5507.CrossRef J. Zhang, M. Liu, Y. Dou, and G. Liu: Metall. Mater. Trans. A 2014, vol. 45A, pp. 5499-5507.CrossRef
65.
Zurück zum Zitat D. Nagarajan, X. Ren, and C.H. Caceres: Mater. Sci. Eng. A 2017, vol. 696, pp. 387-92.CrossRef D. Nagarajan, X. Ren, and C.H. Caceres: Mater. Sci. Eng. A 2017, vol. 696, pp. 387-92.CrossRef
66.
Zurück zum Zitat D. Nagarajan, X. Ren, C.H. Caceres, and J.R. Griffiths: Mg 2012: 9th International Conference on Magnesium Alloys and their Applications, University of British Columbia, Vancouver, 2012, pp. 559-63. D. Nagarajan, X. Ren, C.H. Caceres, and J.R. Griffiths: Mg 2012: 9th International Conference on Magnesium Alloys and their Applications, University of British Columbia, Vancouver, 2012, pp. 559-63.
67.
Zurück zum Zitat ASTM, (ASTM International, 2002), vol. E562-02, pp. 1-7. ASTM, (ASTM International, 2002), vol. E562-02, pp. 1-7.
Metadaten
Titel
The Friction Stress of the Hall–Petch Relationship of Pure Mg and Solid Solutions of Al, Zn, and Gd
verfasst von
D. Nagarajan
C. H. Cáceres
Publikationsdatum
06.09.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 11/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4810-1

Weitere Artikel der Ausgabe 11/2018

Metallurgical and Materials Transactions A 11/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.