Skip to main content
Erschienen in: Flow, Turbulence and Combustion 3/2023

31.10.2022

The Influence of Varying Fuel Composition and Flowfield on Turbulent Biogas-Like Flame Characteristics

verfasst von: Rajesh Sadanandan

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The flame stability of biogas surrogate flames subjected to variations in fuel composition and flow stabilization mechanisms are experimentally investigated in a non-premixed variable swirl burner (IIST-GVS1) with an axial-plus-tangential swirler. OH* chemiluminesce measurements along with 2D-PIV and probe measurements are performed to get insight into the flame characteristics and the emission levels at different operating conditions of the burner. Fuels with pure CH\(_4\) and with 20-40 % CO\(_2\) dilution are tested. 2D-PIV measurements reveal recirculation zones BRZ and ORZ due to the bluff body and combustor walls, respectively, and a central swirl-induced inner recirculation zone (IRZ). The recirculation of hot product gases plays a significant role in flame stabilization. Depending on the global equivalence ratio (\(\phi _g\)), the flame stabilized close to the burner exit, at the boundary of BRZ, or downstream in the swirl-induced region. Though the swirl enhanced the flame stabilization, the region of a stable operating zone (in terms of \(\phi _g\)) reduced with a high amount of swirl. Increasing CO\(_2\) dilution weakened the flame under all flow conditions with an enlargement of the heat release zone area. For a fixed \(\phi _g\), changes in fuel type led to local flowfield modification under similar inflow conditions. Also, with increasing CO\(_2\) dilution, the flame stabilized further downstream in locations with higher turbulence fluctuations and lower axial velocities. The burner, in general, produced deficient levels of NO\(_x\) emissions. However, higher levels of CO are seen with increasing CO\(_2\) dilution and at low \(\phi _g\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adachi, S., Iwamoto, A., Hayashi, S., Yamada, H., Kaneko, S.: Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proc. Combust. Inst. 31, 3131–3138 (2007)CrossRef Adachi, S., Iwamoto, A., Hayashi, S., Yamada, H., Kaneko, S.: Emissions in combustion of lean methane-air and biomass-air mixtures supported by primary hot burned gas in a multi-stage gas turbine combustor. Proc. Combust. Inst. 31, 3131–3138 (2007)CrossRef
Zurück zum Zitat Amato, A., Hudak, B., D’Souza, P., D’Carlo, P., Noble, D., Scarborough, D., Seitzman, J., Lieuwen, T.: Measurements and analysis of CO and O\(_2\) emissions in CH\(_4\)/CO\(_2\)/O\(_2\) flames. Proc. Combust. Inst. 33, 3399–3405 (2011)CrossRef Amato, A., Hudak, B., D’Souza, P., D’Carlo, P., Noble, D., Scarborough, D., Seitzman, J., Lieuwen, T.: Measurements and analysis of CO and O\(_2\) emissions in CH\(_4\)/CO\(_2\)/O\(_2\) flames. Proc. Combust. Inst. 33, 3399–3405 (2011)CrossRef
Zurück zum Zitat Ballachey, G., Johnson, M.: Prediction of blowoff in a fully controllable low-swirl burner burning alternative fuels: effects of burner geometry, swirl, and fuel composition. Proc. Combust. Inst. 34, 3193–3201 (2013)CrossRef Ballachey, G., Johnson, M.: Prediction of blowoff in a fully controllable low-swirl burner burning alternative fuels: effects of burner geometry, swirl, and fuel composition. Proc. Combust. Inst. 34, 3193–3201 (2013)CrossRef
Zurück zum Zitat Birouk, M., Saediamiri, M., Kozinski, J.A.: Non-premixed turbulent biogas flame: effect of the co-flow air swirl strength on the stability limits. Combust. Sci. Technol. 186(10), 1460–1477 (2014)CrossRef Birouk, M., Saediamiri, M., Kozinski, J.A.: Non-premixed turbulent biogas flame: effect of the co-flow air swirl strength on the stability limits. Combust. Sci. Technol. 186(10), 1460–1477 (2014)CrossRef
Zurück zum Zitat Charest, M.R.J., Gülder, Ö.L., Groth, P.T.: Numerical and experimental study of soot formation in laminar diffusion flames buring simulated biogas fuels at elevated pressures. Combust. Flame 161, 2678–2691 (2014)CrossRef Charest, M.R.J., Gülder, Ö.L., Groth, P.T.: Numerical and experimental study of soot formation in laminar diffusion flames buring simulated biogas fuels at elevated pressures. Combust. Flame 161, 2678–2691 (2014)CrossRef
Zurück zum Zitat Claypole, T.C., Syred, N.: The effect of swirl burner aerodynamics on NO\(_x\) formation. Proc. Combust. Inst. 18, 81–89 (1981)CrossRef Claypole, T.C., Syred, N.: The effect of swirl burner aerodynamics on NO\(_x\) formation. Proc. Combust. Inst. 18, 81–89 (1981)CrossRef
Zurück zum Zitat Du, D.X., Axelbaum, R.L., Law, C.K.: The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Proc. Combust. Inst. 23, 1501–1507 (1990)CrossRef Du, D.X., Axelbaum, R.L., Law, C.K.: The influence of carbon dioxide and oxygen as additives on soot formation in diffusion flames. Proc. Combust. Inst. 23, 1501–1507 (1990)CrossRef
Zurück zum Zitat Erete, J.I., Hughes, K.J., Ma, L., Fairweather, M., Pourkashanian, M., Williams, A.: Effect of CO\(_2\) dilution on the structure and emissions from turbulent, non-premixed methane-air jet flames. J. Energy. Inst. 90(2), 191–200 (2017)CrossRef Erete, J.I., Hughes, K.J., Ma, L., Fairweather, M., Pourkashanian, M., Williams, A.: Effect of CO\(_2\) dilution on the structure and emissions from turbulent, non-premixed methane-air jet flames. J. Energy. Inst. 90(2), 191–200 (2017)CrossRef
Zurück zum Zitat Fischer, M., Jiang, X.: An investigation of the chemical kinetics of biogas combustion. Fuel 150, 711–720 (2015)CrossRef Fischer, M., Jiang, X.: An investigation of the chemical kinetics of biogas combustion. Fuel 150, 711–720 (2015)CrossRef
Zurück zum Zitat Galmiche, B., Halter, F., Foucher, F., Dagaut, P.: Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy. Fuels 25, 948–954 (2011)CrossRef Galmiche, B., Halter, F., Foucher, F., Dagaut, P.: Effects of dilution on laminar burning velocity of premixed methane/air flames. Energy. Fuels 25, 948–954 (2011)CrossRef
Zurück zum Zitat Glivin, G., Kalaiselan, N., Mariappan, V., Premalatha, M., Murugan, P., Sekhar, J.: Conversion of biowaste to biogas: a review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel 302, 121153 (2021)CrossRef Glivin, G., Kalaiselan, N., Mariappan, V., Premalatha, M., Murugan, P., Sekhar, J.: Conversion of biowaste to biogas: a review of current status on techno-economic challenges, policies, technologies and mitigation to environmental impacts. Fuel 302, 121153 (2021)CrossRef
Zurück zum Zitat Gupta, S.K., Mittal, M.: Effect of biogas composition variations on engine characteristics including operational limits of a spark-igniiton engine. J. Eng. Gas Turbines Power 141(101002), 1–8 (2019) Gupta, S.K., Mittal, M.: Effect of biogas composition variations on engine characteristics including operational limits of a spark-igniiton engine. J. Eng. Gas Turbines Power 141(101002), 1–8 (2019)
Zurück zum Zitat Halter, F., Foucher, F., Landry, L., Mounamim-Rousselle, C.: Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames. Combust. Sci. Technol. 181, 813–827 (2009)CrossRef Halter, F., Foucher, F., Landry, L., Mounamim-Rousselle, C.: Effect of dilution by nitrogen and/or carbon dioxide on methane and iso-octane air flames. Combust. Sci. Technol. 181, 813–827 (2009)CrossRef
Zurück zum Zitat Han, D., Satija, A., Gore, J.P., Lucht, R.P.: Experimental study of CO\(_2\) diluted, piloted, turbulent CH\(_4\)/air premixed flames using high-repetition-rate OH PLIF. Combust. Flame 193, 145–156 (2018)CrossRef Han, D., Satija, A., Gore, J.P., Lucht, R.P.: Experimental study of CO\(_2\) diluted, piloted, turbulent CH\(_4\)/air premixed flames using high-repetition-rate OH PLIF. Combust. Flame 193, 145–156 (2018)CrossRef
Zurück zum Zitat Hosseini, S.E., Wahid, M.A.: Effects of burner configuration on the characteristics of biogas flameless combustion. Combust. Sci. Technol. 187, 1240–1262 (2015)CrossRef Hosseini, S.E., Wahid, M.A.: Effects of burner configuration on the characteristics of biogas flameless combustion. Combust. Sci. Technol. 187, 1240–1262 (2015)CrossRef
Zurück zum Zitat Jahangirian, S., Engeda, A., Wichman, I.S.: Thermal and chemical structure of biogas counterflow diffusion flames. Energy. Fuel 23, 5312–5321 (2009)CrossRef Jahangirian, S., Engeda, A., Wichman, I.S.: Thermal and chemical structure of biogas counterflow diffusion flames. Energy. Fuel 23, 5312–5321 (2009)CrossRef
Zurück zum Zitat Kataoka, T., Nakajima, T., Nakagawa, T., Hamano, N.: (2007) Combustion characteristics of methane-CO\(_2\) mixture and a microturbine cogeneration system utilized sewage digester gas, Proceedings of the ASME, GT2007-27351 Kataoka, T., Nakajima, T., Nakagawa, T., Hamano, N.: (2007) Combustion characteristics of methane-CO\(_2\) mixture and a microturbine cogeneration system utilized sewage digester gas, Proceedings of the ASME, GT2007-27351
Zurück zum Zitat Kobayashi, H., Hagiwara, H., Kaneko, H., Ogami, Y.: Effects of CO\(_2\) dilution on turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 31, 1451–1458 (2007)CrossRef Kobayashi, H., Hagiwara, H., Kaneko, H., Ogami, Y.: Effects of CO\(_2\) dilution on turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 31, 1451–1458 (2007)CrossRef
Zurück zum Zitat Lafay, Y., Taupin, B., Martins, G., Cabot, G., Renou, B., Boukhalfa, A.: Experimental study of biogas combustion using a gas turbine configuration. Exp. Fluid 43, 395–410 (2007)CrossRef Lafay, Y., Taupin, B., Martins, G., Cabot, G., Renou, B., Boukhalfa, A.: Experimental study of biogas combustion using a gas turbine configuration. Exp. Fluid 43, 395–410 (2007)CrossRef
Zurück zum Zitat Liu, F., Guo, H., Smallwood, G.J.: The chemical effect of CO\(_2\) replacement of N\(_2\) in air on the burning velocity of CH\(_4\) and H\(_2\) premixed flames. Combust. Flame 133, 495–497 (2003)CrossRef Liu, F., Guo, H., Smallwood, G.J.: The chemical effect of CO\(_2\) replacement of N\(_2\) in air on the burning velocity of CH\(_4\) and H\(_2\) premixed flames. Combust. Flame 133, 495–497 (2003)CrossRef
Zurück zum Zitat Liu, F.S., Guo, H.S., Smallwood, G.J., Gulder, O.L.: The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NO\(_x\) formation. Combust. Flame 125(1–2), 778–787 (2001)CrossRef Liu, F.S., Guo, H.S., Smallwood, G.J., Gulder, O.L.: The chemical effects of carbon dioxide as an additive in an ethylene diffusion flame: implications for soot and NO\(_x\) formation. Combust. Flame 125(1–2), 778–787 (2001)CrossRef
Zurück zum Zitat Lock, A., Briones, A.M., Aggarwal, S.K., Puri, I.K., Hegde, U.: Liftoff and extinction characteristics of fuel- and air-stream-diluted methane-air flames. Combust. Flame 149, 340–352 (2007)CrossRef Lock, A., Briones, A.M., Aggarwal, S.K., Puri, I.K., Hegde, U.: Liftoff and extinction characteristics of fuel- and air-stream-diluted methane-air flames. Combust. Flame 149, 340–352 (2007)CrossRef
Zurück zum Zitat Midkiff, K.C., Bell, S.R., Rathnam, S., Bhargava, S.: Fuel composition effects on emissions from a spark ignited engine operated on simulated biogases. J. Eng. Gas. Turbine. Power 123, 132–8 (2001)CrossRef Midkiff, K.C., Bell, S.R., Rathnam, S., Bhargava, S.: Fuel composition effects on emissions from a spark ignited engine operated on simulated biogases. J. Eng. Gas. Turbine. Power 123, 132–8 (2001)CrossRef
Zurück zum Zitat Min, J., Baillot, F., Wyzgolik, A., Domingues, E., Talbaut, M., Rouland, B.P.: Impact of CO\(_2\)/N\(_2\)/Ar addition on the internal structure and stability of nonpremixed CH\(_4\)/air flames at lifting. Combust. Sci. Technol 182(11), 1782–1804 (2010)CrossRef Min, J., Baillot, F., Wyzgolik, A., Domingues, E., Talbaut, M., Rouland, B.P.: Impact of CO\(_2\)/N\(_2\)/Ar addition on the internal structure and stability of nonpremixed CH\(_4\)/air flames at lifting. Combust. Sci. Technol 182(11), 1782–1804 (2010)CrossRef
Zurück zum Zitat Mordaunt, C.J., Pierce, W.C.: Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO\(_2\) doping concentration in CH\(_4\) to emulate biogas combustion. Fuel 124, 258–268 (2014)CrossRef Mordaunt, C.J., Pierce, W.C.: Design and preliminary results of an atmospheric-pressure model gas turbine combustor utilizing varying CO\(_2\) doping concentration in CH\(_4\) to emulate biogas combustion. Fuel 124, 258–268 (2014)CrossRef
Zurück zum Zitat Papapostolou, V., d’Auzay, C.T., Chakraborty, N.: A numerical investigation of the effects of fuel composition on the minimum ignition energy for homogeneous biogas-air mixtures. Flow. Turb. Comb. 107, 376–403 (2021)CrossRef Papapostolou, V., d’Auzay, C.T., Chakraborty, N.: A numerical investigation of the effects of fuel composition on the minimum ignition energy for homogeneous biogas-air mixtures. Flow. Turb. Comb. 107, 376–403 (2021)CrossRef
Zurück zum Zitat Reuter, C.B., Won, S.H., Ju, Y.:(2018). Effects of CO\(_2\) addition on the turbulent flame front dynamics and propagation speeds of methane/air mixtures. J. Eng. Gas. Turbine. Power. 141(1): 011503-011503-12 Reuter, C.B., Won, S.H., Ju, Y.:(2018). Effects of CO\(_2\) addition on the turbulent flame front dynamics and propagation speeds of methane/air mixtures. J. Eng. Gas. Turbine. Power. 141(1): 011503-011503-12
Zurück zum Zitat Sabia, P., Lavadera, M.L., Sorrentino, G., Guidicianni, P., Ragucci, R., de Joannon, M.: H\(_2\)O and CO\(_2\) Dilution in MILD combustion of simple hydrocarbons. Flow. Turb. Comb. 96, 433–448 (2015)CrossRef Sabia, P., Lavadera, M.L., Sorrentino, G., Guidicianni, P., Ragucci, R., de Joannon, M.: H\(_2\)O and CO\(_2\) Dilution in MILD combustion of simple hydrocarbons. Flow. Turb. Comb. 96, 433–448 (2015)CrossRef
Zurück zum Zitat Saediamiri, M., Birouk, M., Kozinski, J.A.: Enhancing the stability limits of biogas non-premixed flame. Combust. Sci. Technol. 188(11), 2077–2104 (2016)CrossRef Saediamiri, M., Birouk, M., Kozinski, J.A.: Enhancing the stability limits of biogas non-premixed flame. Combust. Sci. Technol. 188(11), 2077–2104 (2016)CrossRef
Zurück zum Zitat Sarras, G., Mahmoudi, Y., Arteaga Mendez, L.D., van Veen, E.H., Tummers, M.J., Roekaerts, D.J.E.M.: Modeling of turbulent natural gas and biogas flames of the Delft jet-in-hot-coflow burner: effects of coflow temperature, fuel temperature and fuel composition on the flame lift-off height, flow Turb. Comb. 93, 607–635 (2014) Sarras, G., Mahmoudi, Y., Arteaga Mendez, L.D., van Veen, E.H., Tummers, M.J., Roekaerts, D.J.E.M.: Modeling of turbulent natural gas and biogas flames of the Delft jet-in-hot-coflow burner: effects of coflow temperature, fuel temperature and fuel composition on the flame lift-off height, flow Turb. Comb. 93, 607–635 (2014)
Zurück zum Zitat Somehsaraei, H.N., Majoumerd, M.M., Breuhaus, P., Assadi, M.: Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl. Therm. Eng. 66, 181–190 (2014)CrossRef Somehsaraei, H.N., Majoumerd, M.M., Breuhaus, P., Assadi, M.: Performance analysis of a biogas-fueled micro gas turbine using a validated thermodynamic model. Appl. Therm. Eng. 66, 181–190 (2014)CrossRef
Zurück zum Zitat Tingas, E..Al., Im, H..G., Kyritsis, D..C., Goussis, D..A.: The use of CO\(_2\) as an additive for ignition delay and pollutant control in CH\(_4\)/air autoignition. Fuel 211, 898–905 (2018)CrossRef Tingas, E..Al., Im, H..G., Kyritsis, D..C., Goussis, D..A.: The use of CO\(_2\) as an additive for ignition delay and pollutant control in CH\(_4\)/air autoignition. Fuel 211, 898–905 (2018)CrossRef
Zurück zum Zitat Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th edn. Springer-Verlag, Berlin (2006)MATH Warnatz, J., Maas, U., Dibble, R.W.: Combustion, 4th edn. Springer-Verlag, Berlin (2006)MATH
Zurück zum Zitat Zaidaoui, H., Boushaki, T., Sautet, J.C., Chauveau, C., Sarh, B., Gokalp, I.: Effects of CO\(_2\) dilution and O\(_2\) enrichment on non-premixed turbulent CH\(_4\)-air flames in a swirl burner. Combust. Sci. Technol. 190(5), 784–802 (2017)CrossRef Zaidaoui, H., Boushaki, T., Sautet, J.C., Chauveau, C., Sarh, B., Gokalp, I.: Effects of CO\(_2\) dilution and O\(_2\) enrichment on non-premixed turbulent CH\(_4\)-air flames in a swirl burner. Combust. Sci. Technol. 190(5), 784–802 (2017)CrossRef
Zurück zum Zitat d’Auzay, C.T., Papapostolou, V., Chakraborty, N.: Effects of biogas composition on the edge flame propagation in igniting turbulent mixing layers. Flow. Turb. Comb. 106, 1437–1459 (2021)CrossRef d’Auzay, C.T., Papapostolou, V., Chakraborty, N.: Effects of biogas composition on the edge flame propagation in igniting turbulent mixing layers. Flow. Turb. Comb. 106, 1437–1459 (2021)CrossRef
Metadaten
Titel
The Influence of Varying Fuel Composition and Flowfield on Turbulent Biogas-Like Flame Characteristics
verfasst von
Rajesh Sadanandan
Publikationsdatum
31.10.2022
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 3/2023
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-022-00384-0

Weitere Artikel der Ausgabe 3/2023

Flow, Turbulence and Combustion 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.