Skip to main content
Erschienen in: Physics of Metals and Metallography 2/2022

01.02.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4

verfasst von: A. S. Klepikova, O. E. Petukhova, M. R. Popov, N. G. Shelushinina, T. B. Charikova

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents the results of studies of the temperature and field dependences of the resistivity tensor of the electron-doped superconductor Nd2 – xCexCuO4 (0.12 ≤ x ≤ 0.20) in the CuO2 conducting planes and in the direction perpendicular to the CuO2 planes. These results are successfully interpreted within the concept of quasi-two-dimensionality of the systems with high metallic conductivity in the CuO2 conducting planes (dρab/dT > 0) and nonmetallic temperature dependence of conductivity in the direction of the c‑axis (dρc/dT < 0) due to incoherent tunneling and thermal activation through barriers between the CuO2 conducting layers. The specificities of the behavior of the magnetoresistivity ρxx(B) and the Hall resistivity ρxy(B) in the mixed (resistive) state are associated with the dynamics of the transverse motion of Abrikosov and Josephson vortices in the flux flow regime in crossed electric and magnetic fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987).CrossRef K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987).CrossRef
2.
Zurück zum Zitat E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd2 – xCexCuO4,” Science 347, 282–285 (2015.CrossRef E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd2 – xCexCuO4,” Science 347, 282–285 (2015.CrossRef
3.
Zurück zum Zitat P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015). P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015).
4.
Zurück zum Zitat A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd2 – xCexCuO4 /SrTiO3,” J. Phys. Conf. Ser. 993, 012002 (2018).CrossRef A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd2 – xCexCuO4 /SrTiO3,” J. Phys. Conf. Ser. 993, 012002 (2018).CrossRef
5.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd2 – xCexCuO4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018).CrossRef A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd2 – xCexCuO4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018).CrossRef
6.
Zurück zum Zitat A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd1.83Ce0.17CuO4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014).CrossRef A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd1.83Ce0.17CuO4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014).CrossRef
7.
Zurück zum Zitat A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd2 – xCexCuO4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018).CrossRef A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd2 – xCexCuO4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018).CrossRef
8.
Zurück zum Zitat A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd2 – xCexCuO4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018). A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd2 – xCexCuO4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018).
9.
Zurück zum Zitat A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019).CrossRef A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd1.85Ce0.15CuO4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019).CrossRef
10.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd1.9Ce0.1CuO4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021).CrossRef A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd1.9Ce0.1CuO4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021).CrossRef
11.
Zurück zum Zitat H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989).CrossRef H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989).CrossRef
12.
Zurück zum Zitat E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd2 – yCeyCuOz,” Phys. Rev. B 41, 6582–6590 (1990).CrossRef E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd2 – yCeyCuOz,” Phys. Rev. B 41, 6582–6590 (1990).CrossRef
13.
Zurück zum Zitat N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd1.85Ce0.15CuO4 – δ,” Phys. Rev. B 43, 12930–12934 (1991).CrossRef N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd1.85Ce0.15CuO4 – δ,” Phys. Rev. B 43, 12930–12934 (1991).CrossRef
14.
Zurück zum Zitat A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd2 – xCexCuOy,” Phys. Rev. B 53, 5157–5159 (1996).CrossRef A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd2 – xCexCuOy,” Phys. Rev. B 53, 5157–5159 (1996).CrossRef
15.
Zurück zum Zitat T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd2 – xCexCuO4 + δ,” Phys. C Supercond. 483, 113–118 (2012).CrossRef T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd2 – xCexCuO4 + δ,” Phys. C Supercond. 483, 113–118 (2012).CrossRef
16.
Zurück zum Zitat H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd2 – xCexCuO4,” Phys. Rev. B 75, 224514 (2007).CrossRef H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd2 – xCexCuO4,” Phys. Rev. B 75, 224514 (2007).CrossRef
17.
Zurück zum Zitat J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019).CrossRef J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019).CrossRef
18.
Zurück zum Zitat M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008). M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008).
19.
Zurück zum Zitat A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991).CrossRef A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991).CrossRef
20.
Zurück zum Zitat Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian]. Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian].
21.
Zurück zum Zitat A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd2 – xCexCuO4 + δ,” Low Temp. Phys. 45, 212 (2019).CrossRef A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd2 – xCexCuO4 + δ,” Low Temp. Phys. 45, 212 (2019).CrossRef
22.
Zurück zum Zitat P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988).CrossRef P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988).CrossRef
23.
Zurück zum Zitat G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991).CrossRef G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991).CrossRef
24.
Zurück zum Zitat T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991).CrossRef T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991).CrossRef
25.
Zurück zum Zitat T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd2 – xCexCuO4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007).CrossRef T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd2 – xCexCuO4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007).CrossRef
26.
Zurück zum Zitat Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd2 – xCexCuO4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991).CrossRef Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd2 – xCexCuO4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991).CrossRef
27.
Zurück zum Zitat T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd2CuO4,” Phys. C Supercond. 388–389, 323–324 (2003).CrossRef T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd2CuO4,” Phys. C Supercond. 388389, 323–324 (2003).CrossRef
28.
Zurück zum Zitat T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd2 – xCexCuO4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013).CrossRef T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd2 – xCexCuO4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013).CrossRef
29.
Zurück zum Zitat A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd2 – xCexCuO4 + δ and Ca2 ‒ xSrxRuO4,” Phys. Met. Metallogr. 104, 67–80 (2007).CrossRef A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd2 – xCexCuO4 + δ and Ca2 ‒ xSrxRuO4,” Phys. Met. Metallogr. 104, 67–80 (2007).CrossRef
30.
Zurück zum Zitat N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976). N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976).
31.
Zurück zum Zitat J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989). J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989).
32.
Zurück zum Zitat H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999).CrossRef H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999).CrossRef
33.
Zurück zum Zitat T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995).CrossRef T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995).CrossRef
34.
Zurück zum Zitat P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd1.85Ce0.15CuO4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995).CrossRef P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd1.85Ce0.15CuO4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995).CrossRef
35.
Zurück zum Zitat M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984).CrossRef M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984).CrossRef
36.
Zurück zum Zitat C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd1.85CuO4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989).CrossRef C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd1.85CuO4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989).CrossRef
37.
Zurück zum Zitat A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995).CrossRef A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995).CrossRef
38.
Zurück zum Zitat R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998).CrossRef R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998).CrossRef
39.
Zurück zum Zitat N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992).CrossRef N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992).CrossRef
40.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi2Sr2CaCu2O8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003).CrossRef M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi2Sr2CaCu2O8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003).CrossRef
41.
Zurück zum Zitat V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998).CrossRef V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998).CrossRef
42.
Zurück zum Zitat P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian]. P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian].
43.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007).CrossRef M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007).CrossRef
44.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi2Sr2CaCu2O8 + δ,” Phys. C Supercond. 460–462, 831–832 (2007).CrossRef M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi2Sr2CaCu2O8 + δ,” Phys. C Supercond. 460462, 831–832 (2007).CrossRef
45.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, and E. Silva, “c-Axis transport and phenomenology of the pseudogap state in Bi2Sr2CaCu2O8 + δ,” Phys. Rev. B 70, 214530 (2004).CrossRef M. Giura, R. Fastampa, S. Sarti, and E. Silva, “c-Axis transport and phenomenology of the pseudogap state in Bi2Sr2CaCu2O8 + δ,” Phys. Rev. B 70, 214530 (2004).CrossRef
46.
Zurück zum Zitat M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd2 ‒ xCexCuO4 films deposited on SrTiO3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019).CrossRef M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd2 ‒ xCexCuO4 films deposited on SrTiO3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019).CrossRef
47.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd2 – xCexCuO4,” Low Temp. Phys. 45, 217–223 (2019).CrossRef A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd2 – xCexCuO4,” Low Temp. Phys. 45, 217–223 (2019).CrossRef
48.
Zurück zum Zitat F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998).CrossRef F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998).CrossRef
49.
Zurück zum Zitat B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).CrossRef B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).CrossRef
50.
Zurück zum Zitat A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987).CrossRef A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987).CrossRef
51.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd2 – xCexCuO4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd2 – xCexCuO4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018).
52.
Zurück zum Zitat M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd2 – xCexCuO4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019). M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd2 – xCexCuO4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019).
53.
Zurück zum Zitat T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd2 – xCexCuO4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017).CrossRef T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd2 – xCexCuO4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017).CrossRef
54.
Zurück zum Zitat G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994).CrossRef G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994).CrossRef
55.
Zurück zum Zitat S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi2Sr2CaCu2O8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989).CrossRef S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi2Sr2CaCu2O8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989).CrossRef
56.
Zurück zum Zitat B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991).CrossRef B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991).CrossRef
57.
Zurück zum Zitat N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996).CrossRef N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996).CrossRef
58.
Zurück zum Zitat E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995).CrossRef E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995).CrossRef
59.
Zurück zum Zitat N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009). N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009).
60.
Zurück zum Zitat M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed. M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed.
61.
Zurück zum Zitat W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa2Cu3O7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991).CrossRef W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa2Cu3O7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991).CrossRef
62.
Zurück zum Zitat R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992).CrossRef R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi2Sr2CaCu2O8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992).CrossRef
63.
Zurück zum Zitat M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “c‑Axis Conductivity and Intrinsic Josephson Effects in YBa2Cu3O7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996).CrossRef M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “c‑Axis Conductivity and Intrinsic Josephson Effects in YBa2Cu3O7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996).CrossRef
64.
Zurück zum Zitat A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000).CrossRef A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000).CrossRef
65.
Zurück zum Zitat B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990).CrossRef B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990).CrossRef
66.
Zurück zum Zitat G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991).CrossRef G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991).CrossRef
67.
Zurück zum Zitat P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967).CrossRef P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967).CrossRef
68.
Zurück zum Zitat L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996).CrossRef L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996).CrossRef
69.
Zurück zum Zitat A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988).CrossRef A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988).CrossRef
70.
Zurück zum Zitat S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000).CrossRef S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000).CrossRef
71.
Zurück zum Zitat P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990).CrossRef P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990).CrossRef
72.
Zurück zum Zitat R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999).CrossRef R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999).CrossRef
73.
Zurück zum Zitat J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO2 layers and the origin of the negative Hall anomaly in YBa2Cu3O7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993).CrossRef J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO2 layers and the origin of the negative Hall anomaly in YBa2Cu3O7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993).CrossRef
74.
Zurück zum Zitat J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965).CrossRef J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965).CrossRef
75.
Zurück zum Zitat N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd2 – xCexCuO4 + δ (x = 0.14),” Low Temp. Phys. 43, 475–477 (2017).CrossRef N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd2 – xCexCuO4 + δ (x = 0.14),” Low Temp. Phys. 43, 475–477 (2017).CrossRef
76.
Zurück zum Zitat D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995).CrossRef D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995).CrossRef
77.
Zurück zum Zitat M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995). M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995).
78.
Zurück zum Zitat A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995).CrossRef A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995).CrossRef
79.
Zurück zum Zitat X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018).CrossRef X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018).CrossRef
80.
Zurück zum Zitat F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019).CrossRef F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019).CrossRef
81.
Zurück zum Zitat N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993).CrossRef N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993).CrossRef
82.
Zurück zum Zitat A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995).CrossRef A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995).CrossRef
83.
Zurück zum Zitat V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989). V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989).
84.
Zurück zum Zitat L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975).CrossRef L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975).CrossRef
85.
Zurück zum Zitat W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016).CrossRef W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016).CrossRef
86.
Zurück zum Zitat K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989).CrossRef K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989).CrossRef
87.
Zurück zum Zitat I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi2Sr2CaCu2Ox is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990). I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi2Sr2CaCu2Ox is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990).
88.
Zurück zum Zitat G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019).CrossRef G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019).CrossRef
89.
Zurück zum Zitat O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd2 – xCexCuO4,” Phys. C Supercond. Appl. 578, 1353738 (2020). O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd2 – xCexCuO4,” Phys. C Supercond. Appl. 578, 1353738 (2020).
Metadaten
Titel
The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4
verfasst von
A. S. Klepikova
O. E. Petukhova
M. R. Popov
N. G. Shelushinina
T. B. Charikova
Publikationsdatum
01.02.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020053

Weitere Artikel der Ausgabe 2/2022

Physics of Metals and Metallography 2/2022 Zur Ausgabe