Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 2/2022

01.02.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4

verfasst von: A. S. Klepikova, O. E. Petukhova, M. R. Popov, N. G. Shelushinina, T. B. Charikova

Erschienen in: Physics of Metals and Metallography | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

This paper presents the results of studies of the temperature and field dependences of the resistivity tensor of the electron-doped superconductor Nd2 – xCexCuO4 (0.12 ≤ x ≤ 0.20) in the CuO2 conducting planes and in the direction perpendicular to the CuO2 planes. These results are successfully interpreted within the concept of quasi-two-dimensionality of the systems with high metallic conductivity in the CuO2 conducting planes (dρab/dT > 0) and nonmetallic temperature dependence of conductivity in the direction of the c‑axis (dρc/dT < 0) due to incoherent tunneling and thermal activation through barriers between the CuO2 conducting layers. The specificities of the behavior of the magnetoresistivity ρxx(B) and the Hall resistivity ρxy(B) in the mixed (resistive) state are associated with the dynamics of the transverse motion of Abrikosov and Josephson vortices in the flux flow regime in crossed electric and magnetic fields.
Literatur
1.
Zurück zum Zitat K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987). K. A. Muller and J. G. Bednorz, “The discovery of a class of high-temperature superconductors,” Science 237, 1133–1139 (1987).
2.
Zurück zum Zitat E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd 2 – xCe xCuO 4,” Science 347, 282–285 (2015. E. H. Da Silva Neto, E. H. Neto, R. Comin, F. He, R. Sutarto, Y. Jiang, R. L. Greene, G. A. Sawatzky, and A. Damascelli, “Charge ordering in the electron-doped superconductor Nd 2 – xCe xCuO 4,” Science 347, 282–285 (2015.
3.
Zurück zum Zitat P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015). P. Fournier, “T' and infinite-layer electron-doped cuprates,” Phys. C Supercond. Appl. 514, 314–338 (2015).
4.
Zurück zum Zitat A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd 2 – xCe xCuO 4 /SrTiO 3,” J. Phys. Conf. Ser. 993, 012002 (2018). A. S. Klepikova, D. S. Petukhov, O. E. Petukhova, T. B. Charikova, N. G. Shelushinina, and A. A. Ivanov, “Incoherent interlayer transport in single-crystal films of Nd 2 – xCe xCuO 4 /SrTiO 3,” J. Phys. Conf. Ser. 993, 012002 (2018).
5.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the Hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ,” Supercond. Phys. Solid State 60, 2162–2165 (2018).
6.
Zurück zum Zitat A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd 1.83Ce 0.17CuO 4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014). A. Guarino, L. Parlato, C. Bonavolonta, M. Valentino, C. Lisio, A. Leo, G. Grimaldi, S. Pace, G. Pepe, A. Vecchione, and A. Nigro, “Transport and optical properties of epitaxial Nd 1.83Ce 0.17CuO 4 – δ thin films,” J. Phys. Conf. Ser. 507, 012018 (2014).
7.
Zurück zum Zitat A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd 2 – xCe xCuO 4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018). A. Guarino, N. Martucciello, P. Romano, A. Leo, D. D’Agostino, M. Caputo, F. Avitabile, A. Ubaldini, G. Grimaldi, A. Vecchione, F. Bobba, C. Attanasio, and A. Nigro, “Nd 2 – xCe xCuO 4 ± δ ultrathin films crystalline properties,” IEEE Trans. Appl. Supercond. 28, 1–4 (2018).
8.
Zurück zum Zitat A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd 2 – xCe xCuO 4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018). A. Guarino, A. Leo, A. Avella, F. Avitabile, N. Martucciello, G. Grimaldi, A. Romano, S. Pace, P. Romano, and A. Nigro, “Electrical transport properties of sputtered Nd 2 – xCe xCuO 4 ± δ thin films,” Phys. B Condens. Matter 536, 742–746 (2018).
9.
Zurück zum Zitat A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd 1.85Ce 0.15CuO 4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019). A. Galluzzi, A. Nigro, R. Fittipaldi, A. Guarino, S. Pace, and M. Polichetti, “DC magnetic characterization and pinning analysis on Nd 1.85Ce 0.15CuO 4 cuprate superconductor,” J. Magn. Magn. Mater. 475, 125–129 (2019).
10.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd 1.9Ce 0.1CuO 4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021). A. S. Klepikova, T. B. Charikova, M. R. Popov, A. B. Rinkevich, D. V. Perov, and E. A. Kuznetsov, “Anisotropy of magnetic properties and the permittivity of Nd 1.9Ce 0.1CuO 4 + δ single crystal,” Phys. Met. Metallogr. 122, 520–526 (2021).
11.
Zurück zum Zitat H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO 2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989). H. Takagi, S. Uchida, and Y. Tokura, “Superconductivity produced by electron doping in CuO 2-layered compounds,” Phys. Rev. Lett. 62, 1197–1200 (1989).
12.
Zurück zum Zitat E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd 2 – yCe yCuO z,” Phys. Rev. B 41, 6582–6590 (1990). E. Wang, J.-M. Tarascon, L. H. Greene, G. W. Hull, and W. R. McKinnon, “Cationic substitution and role of oxygen in the n-type superconducting T′ system Nd 2 – yCe yCuO z,” Phys. Rev. B 41, 6582–6590 (1990).
13.
Zurück zum Zitat N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd 1.85Ce 0.15CuO 4 – δ,” Phys. Rev. B 43, 12930–12934 (1991). N. A. Fortune, K. Murata, M. Ishibashi, Y. Yokoyama, and Y. Nishihara, “Systematic variation of transport and thermodynamic properties with degree of reduction in Nd 1.85Ce 0.15CuO 4 – δ,” Phys. Rev. B 43, 12930–12934 (1991).
14.
Zurück zum Zitat A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd 2 – xCe xCuO y,” Phys. Rev. B 53, 5157–5159 (1996). A. J. Schultz, J. D. Jorgensen, J. L. Peng, and R. L. Greene, “Single-crystal neutron-diffraction structures of reduced and oxygenated Nd 2 – xCe xCuO y,” Phys. Rev. B 53, 5157–5159 (1996).
15.
Zurück zum Zitat T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. 483, 113–118 (2012). T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, A. V. Korolev, V. N. Neverov, and A. A. Ivanov, “Doping effect on the anomalous behavior of the Hall effect in electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. 483, 113–118 (2012).
16.
Zurück zum Zitat H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd 2 – xCe xCuO 4,” Phys. Rev. B 75, 224514 (2007). H. Matsui, T. Takahashi, T. Sato, K. Terashima, H. Ding, T. Uefuji, and K. Yamada, “Evolution of the pseudogap across the magnet-superconductor phase boundary of Nd 2 – xCe xCuO 4,” Phys. Rev. B 75, 224514 (2007).
17.
Zurück zum Zitat J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019). J. He, C. R. Rotundu, M. S. Scheurer, Y. He, M. Hashimoto, K. -J. Xu, Y. Wang, E. W. Huang, T. Jia, S. Chen, B. Moritz, D. Lu, Y. S. Lee, T. P. Devereaux, and Z. Shen, “Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order,” Proc. Natl. Acad. Sci. U. S. A. 116, 3449–3453 (2019).
18.
Zurück zum Zitat M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008). M. Lambacher, “Crystal growth and normal state transport of electron doped high temperature superconductors,” Dissertation (2008).
19.
Zurück zum Zitat A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991). A. A. Ivanov, S. G. Galkin, A. V. Kuznetsov, and A. P. Menushenkov, “Smooth homogeneous HTSC thin films produced by laser deposition with flux separation,” Phys. C Supercond. 180, 69–72 (1991).
20.
Zurück zum Zitat Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian]. Yu. M. Tsipenyuk, Physical Foundations of Superconductivity: Tutorial (Moscow, MPTI, 2003) [in Russian].
21.
Zurück zum Zitat A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Low Temp. Phys. 45, 212 (2019). A. S. Klepikova, M. R. Popov, A. A. Ivanov, M. V. Medvedev, and T. B. Charikova, “Anisotropy of the critical current density in a layered electron-doped superconductor Nd 2 – xCe xCuO 4 + δ,” Low Temp. Phys. 45, 212 (2019).
22.
Zurück zum Zitat P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988). P. W. Anderson and Z. Zou, ““Normal” tunneling and “normal” transport: Diagnostics for the resonating-valence-bond state,” Phys. Rev. Lett. 60, 132–135 (1988).
23.
Zurück zum Zitat G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991). G. Kotliar, E. Abrahams, A. E. Ruckenstein, C. M. Varma, P. B. Littlewood, and S. Schmitt-Rink, “Long-wavelength behavior, impurity scattering and magnetic excitations in a marginal fermi liquid,” Europhys. Lett. 15, 655–660 (1991).
24.
Zurück zum Zitat T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO 2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991). T. Ito, H. Takagi, S. Ishibashi, T. Ido, and S. Uchida, “Normal-state conductivity between CuO 2 planes in copper oxide superconductors,” Nature 350, 596–598 (1991).
25.
Zurück zum Zitat T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd 2 – xCe xCuO 4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007). T. B. Charikova, A. I. Ponomarev, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, and A. V. Tkach, “Quasi-two-dimensional transport properties of the layered superconductor Nd 2 – xCe xCuO 4 + δ,” J. Exp. Theor. Phys. 105, 626–635 (2007).
26.
Zurück zum Zitat Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd 2 – xCe xCuO 4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991). Z. Z. Wang, T. R. Chien, N. P. Ong, J. M. Tarascon, and E. Wang, “Positive Hall coefficient observed in single-crystal Nd 2 – xCe xCuO 4 – δ at low temperatures,” Phys. Rev. B 4, 3020–3025 (1991).
27.
Zurück zum Zitat T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd 2CuO 4,” Phys. C Supercond. 388– 389, 323–324 (2003). T. Charikova, A. Ignatenkov, A. Ponomarev, A. Ivanov, T. Klimczuk, and W. Sadowski, “In-plane and out-of-plane temperature dependencies of the resistivity in single crystals and films of Nd 2CuO 4,” Phys. C Supercond. 388389, 323–324 (2003).
28.
Zurück zum Zitat T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd 2 – xCe xCuO 4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013). T. B. Charikova, N. G. Shelushinina, G. I. Harus, D. S. Petukhov, V. N. Neverov, and A. A. Ivanov, “Upper critical field in electron-doped cuprate superconductor Nd 2 – xCe xCuO 4 + δ: Two-gap model,” Phys. C Supercond. 488, 25–29 (2013).
29.
Zurück zum Zitat A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd 2 – xCe xCuO 4 + δ and Ca 2 ‒ xSr xRuO 4,” Phys. Met. Metallogr. 104, 67–80 (2007). A. I. Ponomarev, T. B. Charikova, G. I. Kharus, N. G. Shelushinina, A. O. Tashlykov, A. V. Tkach, and A. A. Ivanov, “Anisotropy of transport properties of layered superconductors Nd 2 – xCe xCuO 4 + δ and Ca 2 ‒ xSr xRuO 4,” Phys. Met. Metallogr. 104, 67–80 (2007).
30.
Zurück zum Zitat N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976). N. W. Ashcroft and N. D. Mermin, Solid State Physics (Harcourt College Publishers, Orlando, 1976).
31.
Zurück zum Zitat J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989). J. M. Ziman, Principles of the Theory of Solids (Cambridge, 1989).
32.
Zurück zum Zitat H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999). H. Kontani, K. Kanki, and K. Ueda, “Hall effect and resistivity in high-Tc superconductors: The conserving approximation,” Phys. Rev. B 59, 14723–14739 (1999).
33.
Zurück zum Zitat T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995). T. Dahm and L. Tewordt, “Physical quantities in nearly antiferromagnetic and superconducting states of the two-dimensional Hubbard model and comparison with cuprate superconductors,” Phys. Rev. B 52, 1297–1308 (1995).
34.
Zurück zum Zitat P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd 1.85Ce 0.15CuO 4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995). P. Seng, J. Diehl, S. Klimm, S. Horn, R. Tidecks, K. Samwer, H. Hänsel, and R. Gross, “Hall effect and magnetoresistance in Nd 1.85Ce 0.15CuO 4 – δ films,” Phys. Rev. B 52, 3071–3074 (1995).
35.
Zurück zum Zitat M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984). M. Kaveh and N. Wiser, “Electron-electron scattering in conducting materials,” Adv. Phys. 33, 257–372 (1984).
36.
Zurück zum Zitat C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd 1.85CuO 4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989). C. C. Tsuei, A. Gupta, and G. Koren, “Quadratic temperature dependence of the in-plane resistivity in superconducting Nd 1.85CuO 4 – δ Evidence for Fermi-liquid normal state,” Phys. C Supercond. 161, 415–422 (1989).
37.
Zurück zum Zitat A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995). A. Cassam-Chenai and D. Mailly, “Transport in quasi-two-dimensional systems under a weak magnetic field,” Phys. Rev. B 52, 1984–1995 (1995).
38.
Zurück zum Zitat R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998). R. H. McKenzie and P. Moses, “Incoherent interlayer transport and angular-dependent magnetoresistance oscillations in layered metals,” Phys. Rev. Lett. 81, 4492–4495 (1998).
39.
Zurück zum Zitat N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992). N. Kumar and A. M. Jayannavar, “Temperature dependence of the c-axis resistivity of high-Tc layered oxides,” Phys. Rev. B 45, 5001–5004 (1992).
40.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi 2Sr 2CaCu 2O 8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003). M. Giura, R. Fastampa, S. Sarti, and E. Silva, “Normal-state c-axis transport in Bi 2Sr 2CaCu 2O 8 + δ : Interlayer tunneling and thermally activated dissipation,” Phys. Rev. B 68, 134505 (2003).
41.
Zurück zum Zitat V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998). V. V. Kapaev and Y. V. Kopaev, “High-temperature superconductors as heterostructures,” J. Exp. Theor. Phys. Lett. 68, 223–229 (1998).
42.
Zurück zum Zitat P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian]. P. Landsberg, Problems on Thermodynamics and Statistical Physics (Moscow, 1974) [in Russian].
43.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007). M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Tunnel and thermal c -axis transport in BSCCO in the normal and pseudogap states,” Supercond. Sci. Technol. 20, 54–59 (2007).
44.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. C Supercond. 460– 462, 831–832 (2007). M. Giura, R. Fastampa, S. Sarti, N. Pompeo, and E. Silva, “Interlayer tunnel and thermal activation in c‑axis transport in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. C Supercond. 460462, 831–832 (2007).
45.
Zurück zum Zitat M. Giura, R. Fastampa, S. Sarti, and E. Silva, “ c-Axis transport and phenomenology of the pseudogap state in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. Rev. B 70, 214530 (2004). M. Giura, R. Fastampa, S. Sarti, and E. Silva, “ c-Axis transport and phenomenology of the pseudogap state in Bi 2Sr 2CaCu 2O 8 + δ,” Phys. Rev. B 70, 214530 (2004).
46.
Zurück zum Zitat M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd 2 ‒ xCe xCuO 4 films deposited on SrTiO 3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019). M. R. Popov, A. S. Klepikova, T. B. Charikova, E. F. Talantsev, N. G. Shelushinina, and A. A. Ivanov, “Normal state interlayer conductivity in epitaxial Nd 2 ‒ xCe xCuO 4 films deposited on SrTiO 3 (110) single crystal substrates,” Mater. Res. Express 6, 096005 (2019).
47.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Low Temp. Phys. 45, 217–223 (2019). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, M. R. Popov, and A. A. Ivanov, “Anisotropic temperature dependence of normal state resistivity in underdoped region of a layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Low Temp. Phys. 45, 217–223 (2019).
48.
Zurück zum Zitat F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998). F. M. Izrailev, S. Ruffo, and L. Tessieri, “Classical representation of the one-dimensional Anderson model,” J. Phys. A. Math. Gen. 31, 5263–5270 (1998).
49.
Zurück zum Zitat B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984). B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors (Springer, Berlin, 1984).
50.
Zurück zum Zitat A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987). A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, “Dynamics of the dissipative two-state system,” Rev. Mod. Phys. 59, 1–85 (1987).
51.
Zurück zum Zitat A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018). A. S. Klepikova, T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, and A. A. Ivanov, “Anisotropy of the hall effect in a quasi-two-dimensional electron-doped Nd 2 – xCe xCuO 4 + δ superconductor,” Phys. Met. Metallogr. 60, 2162–2165 (2018).
52.
Zurück zum Zitat M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019). M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Interlayer Hall Effect in n-type doped high temperature superconductor Nd 2 – xCe xCuO 4 + δ,” Phys. C Supercond. Appl. 566, 1353515 (2019).
53.
Zurück zum Zitat T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd 2 – xCe xCuO 4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017). T. B. Charikova, N. G. Shelushinina, D. S. Petukhov, G. I. Kharus, O. E. Petukhova, and A. A. Ivanov, “Correlation between the hall resistance and magnetoresistance in the mixed state of an Nd 2 – xCe xCuO 4 + δ electronic superconductor,” Phys. Met. Metallogr. 118, 1184–1191 (2017).
54.
Zurück zum Zitat G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994). G. Blatter, M. V. Feigel’man, V. B. Geshkenbein, A. I. Larkin, and V. M. Vinokur, “Vortices in high-temperature superconductors,” Rev. Mod. Phys. 66, 1125–1388 (1994).
55.
Zurück zum Zitat S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi 2Sr 2CaCu 2O 8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989). S. Martin, A. T. Fiory, R. M. Fleming, G. P. Espinosa, and A. S. Cooper, “Vortex-pair excitation near the superconducting transition of Bi 2Sr 2CaCu 2O 8 crystals,” Phys. Rev. Lett. 62, 677–680 (1989).
56.
Zurück zum Zitat B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991). B. I. Ivlev, Y. N. Ovchinnikov, and R. S. Thompson, “Quantum flux creep in layered high- Tc superconductors,” Phys. Rev. B 44, 7023–7027 (1991).
57.
Zurück zum Zitat N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996). N. B. Kopnin, “Hall effect in moderately clean superconductors and the transverse force on a moving vortex,” Phys. Rev. B 54, 9475–9483 (1996).
58.
Zurück zum Zitat E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995). E. H. Brandt, “The flux-line lattice in superconductors,” Rep. Prog. Phys. 58, 1465–1594 (1995).
59.
Zurück zum Zitat N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009). N. B. Kopnin, Theory of Nonequilibrium Superconductivity (Oxford, 2009).
60.
Zurück zum Zitat M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed. M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004), 2nd ed.
61.
Zurück zum Zitat W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991). W. K. Kwok, U. Welp, V. M. Vinokur, S. Fleshler, J. Downey, and G. W. Crabtree, “Direct observation of intrinsic pinning by layered structure in single-crystal YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 67, 390–393 (1991).
62.
Zurück zum Zitat R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi 2Sr 2CaCu 2O 8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992). R. Kleiner, F. Steinmeyer, G. Kunkel, and P. Müller, “Intrinsic Josephson effects in Bi 2Sr 2CaCu 2O 8 single crystals,” Phys. Rev. Lett. 68, 2394–2397 (1992).
63.
Zurück zum Zitat M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “ c‑Axis Conductivity and Intrinsic Josephson Effects in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996). M. Rapp, A. Murk, R. Semerad, and W. Prusseit, “ c‑Axis Conductivity and Intrinsic Josephson Effects in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 77, 928–931 (1996).
64.
Zurück zum Zitat A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000). A. E. Koshelev, “Role of in-plane dissipation in dynamics of a Josephson vortex lattice in high-temperature superconductors,” Phys. Rev. B 62, 3616–3619 (2000).
65.
Zurück zum Zitat B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990). B. I. Ivlev and N. B. Kopnin, “Flux creep and flux pinning in layered high-temperature superconductors,” Phys. Rev. Lett. 64, 1828–1830 (1990).
66.
Zurück zum Zitat G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991). G. Blatter, B. I. Ivlev, and J. Rhyner, “Kosterlitz–Thouless transition in the smectic vortex state of a layered superconductor,” Phys. Rev. Lett. 66, 2392–2395 (1991).
67.
Zurück zum Zitat P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967). P. Lebwohl and M. J. Stephen, “Properties of vortex lines in superconducting barriers,” Phys. Rev. 163, 376–379 (1967).
68.
Zurück zum Zitat L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996). L. N. Bulaevskii, M. Maley, H. Safar, and D. Domínguez, “Angular dependence of c-axis plasma frequency and critical current in Josephson-coupled superconductors at high fields,” Phys. Rev. B 53, 6634–6637 (1996).
69.
Zurück zum Zitat A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988). A. Pruymboom, P. H. Kes, E. van der Drift, and S. Radelaar, “Flux-line shear through narrow constraints in superconducting films,” Phys. Rev. Lett. 60, 1430–1433 (1988).
70.
Zurück zum Zitat S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000). S. Anders, A. W. Smith, R. Besseling, P. H. Kes, and H. M. Jaeger, “Static and dynamic shear response in ultrathin layers of vortex matter,” Phys. Rev. B 62, 15195–15199 (2000).
71.
Zurück zum Zitat P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990). P. H. Kes, J. Aarts, V. M. Vinokur, and C. J. van der Beek, “Dissipation in highly anisotropic superconductors,” Phys. Rev. Lett. 64, 1063–1066 (1990).
72.
Zurück zum Zitat R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999). R. Besseling, R. Niggebrugge, and P. H. Kes, “Transport properties of vortices in easy flow channels: A Frenkel–Kontorova study,” Phys. Rev. Lett. 82, 3144–3147 (1999).
73.
Zurück zum Zitat J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO 2 layers and the origin of the negative Hall anomaly in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993). J. M. Harris, N. P. Ong, and Y. F. Yan, “Hall effect of vortices parallel to CuO 2 layers and the origin of the negative Hall anomaly in YBa 2Cu 3O 7 – δ,” Phys. Rev. Lett. 71, 1455–1458 (1993).
74.
Zurück zum Zitat J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965). J. Bardeen and M. J. Stephen, “Theory of the motion of vortices in superconductors,” Phys. Rev. 140, A1197–A1207 (1965).
75.
Zurück zum Zitat N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd 2 – xCe xCuO 4 + δ ( x = 0.14),” Low Temp. Phys. 43, 475–477 (2017). N. G. Shelushinina, G. I. Harus, T. B. Charikova, D. S. Petukhov, O. E. Petukhova, and A. A. Ivanov, “The mixed-state Hall conductivity of single-crystal films Nd 2 – xCe xCuO 4 + δ ( x = 0.14),” Low Temp. Phys. 43, 475–477 (2017).
76.
Zurück zum Zitat D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995). D. I. Khomskii and A. Freimuth, “Charged vortices in high temperature superconductors,” Phys. Rev. Lett. 75, 1384–1386 (1995).
77.
Zurück zum Zitat M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995). M. V. Feigel’man, V. B. Geshkenbein, A. I. Vinokur, and M. V. Larkin, “Sign change of the flux flow hall effect in HTSC,” JETP Lett. 62, 834–840 (1995).
78.
Zurück zum Zitat A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995). A. van Otterlo, M. Feigel’man, V. Geshkenbein, and G. Blatter, “Vortex dynamics and the Hall anomaly: A microscopic analysis,” Phys. Rev. Lett. 75, 3736–3739 (1995).
79.
Zurück zum Zitat X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018). X. Xing, Z. Li, X. Yi, J. Feng, C. Xu, N. Zhou, Y. Meng, Y. Zhang, Y. Pan, L. Qin, W. Zhou, H. Zhao, and Z. Shi, “Thermally activated flux flow, vortex-glass phase transition and the mixed-state Hall effect in 112-type iron pnictide superconductors,” Sci. China Phys., Mech. Astron. 61, 127406 (2018).
80.
Zurück zum Zitat F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019). F. W. Carter, T. Khaire, C. Chang, and V. Novosad, “Low-loss single-photon NbN microwave resonators on Si,” Appl. Phys. Lett. 115, 092602 (2019).
81.
Zurück zum Zitat N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993). N. B. Kopnin, B. I. Ivlev, and V. A. Kalatsky, “The flux-flow Hall effect in type II superconductors. An explanation of the sign reversal,” J. Low Temp. Phys. 90, 1–13 (1993).
82.
Zurück zum Zitat A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995). A. G. Aronov, S. Hikami, and A. I. Larkin, “Gauge invariance and transport properties in superconductors above Tc,” Phys. Rev. B 51, 3880–3885 (1995).
83.
Zurück zum Zitat V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989). V. M. Genkin and A. S. Melnikov, “Motion of Abrikosov vortices in anisotropic superconductors,” J. Exp. Theor. Phys. 95, 2170–2174 (1989).
84.
Zurück zum Zitat L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975). L. P. Gor’kov and N. B. Kopnin, “Vortex motion and resistivity of type-ll superconductors in a magnetic field,” Sov. Phys. Usp. 18, 496–513 (1975).
85.
Zurück zum Zitat W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016). W. Kohno, H. Ueki, and T. Kita, “Hall Effect in the Abrikosov Lattice of Type-II Superconductors,” J. Phys. Soc. Jpn. 85, 083705 (2016).
86.
Zurück zum Zitat K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989). K. C. Woo, K. E. Gray, R. T. Kampwirth, J. H. Kang, S. J. Stein, R. East, and D. M. McKay, “Lorentz-force independence of resistance tails for high-temperature superconductors in magnetic fields near Tc,” Phys. Rev. Lett. 63, 1877–1879 (1989).
87.
Zurück zum Zitat I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi 2Sr 2CaCu 2O x is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990). I. G. Gorlova and Y. I. Latishev, “The equivalence of the influence of a weak magnetic field and current on the resistance of single crystals Bi 2Sr 2CaCu 2O x is lower than the Berezinskii–Kosterlitz–Thouless transition temperature,” JETP Lett. 51, 224–227 (1990).
88.
Zurück zum Zitat G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019). G. Venditti, J. Biscaras, S. Hurand, N. Bergeal, J. Lesueur, A. Dogra, R. C. Budhani, M. Mondal, J. Jesudasan, P. Raychaudhuri, S. Caprara, and L. Benfatto, “Nonlinear I–V characteristics of two-dimensional superconductors: Berezinskii–Kosterlitz–Thouless physics versus inhomogeneity,” Phys. Rev. B 100, 064506 (2019).
89.
Zurück zum Zitat O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Phys. C Supercond. Appl. 578, 1353738 (2020). O. E. Petukhova, M. R. Popov, A. S. Klepikova, N. G. Shelushinina, A. A. Ivanov, and T. B. Charikova, “Lateral vortex motion in highly layered electron-doped superconductor Nd 2 – xCe xCuO 4,” Phys. C Supercond. Appl. 578, 1353738 (2020).
Metadaten
Titel
The Interplay of the Charge and Vortex Subsystems in Anisotropic Electron-Doped Superconductor Nd2 – xCexCuO4
verfasst von
A. S. Klepikova
O. E. Petukhova
M. R. Popov
N. G. Shelushinina
T. B. Charikova
Publikationsdatum
01.02.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 2/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22020053

Weitere Artikel der Ausgabe 2/2022

Physics of Metals and Metallography 2/2022 Zur Ausgabe