Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2012

01.02.2012

The Ising decoder: reading out the activity of large neural ensembles

verfasst von: Michael T. Schaub, Simon R. Schultz

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Ising model has recently received much attention for the statistical description of neural spike train data. In this paper, we propose and demonstrate its use for building decoders capable of predicting, on a millisecond timescale, the stimulus represented by a pattern of neural activity. After fitting to a training dataset, the Ising decoder can be applied “online” for instantaneous decoding of test data. While such models can be fit exactly using Boltzmann learning, this approach rapidly becomes computationally intractable as neural ensemble size increases. We show that several approaches, including the Thouless–Anderson–Palmer (TAP) mean field approach from statistical physics, and the recently developed Minimum Probability Flow Learning (MPFL) algorithm, can be used for rapid inference of model parameters in large-scale neural ensembles. Use of the Ising model for decoding, unlike other problems such as functional connectivity estimation, requires estimation of the partition function. As this involves summation over all possible responses, this step can be limiting. Mean field approaches avoid this problem by providing an analytical expression for the partition function. We demonstrate these decoding techniques by applying them to simulated neural ensemble responses from a mouse visual cortex model, finding an improvement in decoder performance for a model with heterogeneous as opposed to homogeneous neural tuning and response properties. Our results demonstrate the practicality of using the Ising model to read out, or decode, spatial patterns of activity comprised of many hundreds of neurons.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aghagolzadeh, M., Eldawlatly, S., & Oweiss, K. (2010). Synergistic coding by cortical neural ensembles. IEEE Transactions on Information Theory, 56(2), 875–899.PubMedCrossRef Aghagolzadeh, M., Eldawlatly, S., & Oweiss, K. (2010). Synergistic coding by cortical neural ensembles. IEEE Transactions on Information Theory, 56(2), 875–899.PubMedCrossRef
Zurück zum Zitat Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman, E. A., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society B: Biological Sciences, 264(1389), 1775–1783.PubMedCrossRef Baddeley, R., Abbott, L. F., Booth, M. C., Sengpiel, F., Freeman, T., Wakeman, E. A., et al. (1997). Responses of neurons in primary and inferior temporal visual cortices to natural scenes. Proceedings of the Royal Society B: Biological Sciences, 264(1389), 1775–1783.PubMedCrossRef
Zurück zum Zitat Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation, 8(6), 1185–1202.PubMedCrossRef Bair, W., & Koch, C. (1996). Temporal precision of spike trains in extrastriate cortex of the behaving macaque monkey. Neural Computation, 8(6), 1185–1202.PubMedCrossRef
Zurück zum Zitat Bair, W., Zohary, E., & Newsome, W. T. (2001). Correlated firing in macaque visual area MT: Time scales and relationship to behavior. Journal of Neuroscience, 21(5), 1676–1697.PubMed Bair, W., Zohary, E., & Newsome, W. T. (2001). Correlated firing in macaque visual area MT: Time scales and relationship to behavior. Journal of Neuroscience, 21(5), 1676–1697.PubMed
Zurück zum Zitat Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), 39–71. Berger, A. L., Pietra, V. J. D., & Pietra, S. A. D. (1996). A maximum entropy approach to natural language processing. Computational Linguistics, 22(1), 39–71.
Zurück zum Zitat Bi, G.-Q., & Poo, M.-M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24(1), 139–166.PubMedCrossRef Bi, G.-Q., & Poo, M.-M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24(1), 139–166.PubMedCrossRef
Zurück zum Zitat Bishop, C. M. (2007). Pattern recognition and machine learning (Information science and statistics) (1st ed., 2006; corr. 2nd printing ed.). New York: Springer. Bishop, C. M. (2007). Pattern recognition and machine learning (Information science and statistics) (1st ed., 2006; corr. 2nd printing ed.). New York: Springer.
Zurück zum Zitat Broderick, T., Dudík, M., Tkačik, G., Schapire, R. E., & Bialek, W. (2007). Faster solutions of the inverse pairwise Ising problem. arXiv:0712.2437v2. Broderick, T., Dudík, M., Tkačik, G., Schapire, R. E., & Bialek, W. (2007). Faster solutions of the inverse pairwise Ising problem. arXiv:​0712.​2437v2.
Zurück zum Zitat Butts, D. A., Weng, C., Jin, J., Yeh, C.-I. I., Lesica, N. A., Alonso, J.-M. M., et al. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449(7158), 92–95.PubMedCrossRef Butts, D. A., Weng, C., Jin, J., Yeh, C.-I. I., Lesica, N. A., Alonso, J.-M. M., et al. (2007). Temporal precision in the neural code and the timescales of natural vision. Nature, 449(7158), 92–95.PubMedCrossRef
Zurück zum Zitat Carr, C. E. (1993). Processing of temporal information in the brain. Annual Review of Neuroscience, 16, 223–243.PubMedCrossRef Carr, C. E. (1993). Processing of temporal information in the brain. Annual Review of Neuroscience, 16, 223–243.PubMedCrossRef
Zurück zum Zitat Chen, Y., Geisler, W. S., & Seidemann, E. (2006). Optimal decoding of correlated neural population responses in the primate visual cortex. Nature. Neuroscience, 9(11), 1412–1420.PubMedCrossRef Chen, Y., Geisler, W. S., & Seidemann, E. (2006). Optimal decoding of correlated neural population responses in the primate visual cortex. Nature. Neuroscience, 9(11), 1412–1420.PubMedCrossRef
Zurück zum Zitat Das, A., & Gilbert, C. D. (1999). Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature, 399, 643–644.CrossRef Das, A., & Gilbert, C. D. (1999). Topography of contextual modulations mediated by short-range interactions in primary visual cortex. Nature, 399, 643–644.CrossRef
Zurück zum Zitat Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327(5965), 584–587.PubMedCrossRef Ecker, A. S., Berens, P., Keliris, G. A., Bethge, M., Logothetis, N. K., & Tolias, A. S. (2010). Decorrelated neuronal firing in cortical microcircuits. Science, 327(5965), 584–587.PubMedCrossRef
Zurück zum Zitat Földiák, P. (1993). The ‘ideal homunculus’: Statistical inference from neural population responses. In Computation and neural systems (pp. 55–60). Norwell: Kluwer Academic.CrossRef Földiák, P. (1993). The ‘ideal homunculus’: Statistical inference from neural population responses. In Computation and neural systems (pp. 55–60). Norwell: Kluwer Academic.CrossRef
Zurück zum Zitat Gawne, T. J., Kjaer, T. W., Hertz, J. A., & Richmond, B. J. (1996). Adjacent visual cortical complex cells share about 20% of their stimulus-related information. Cerebral Cortex, 6(3), 482–489.PubMedCrossRef Gawne, T. J., Kjaer, T. W., Hertz, J. A., & Richmond, B. J. (1996). Adjacent visual cortical complex cells share about 20% of their stimulus-related information. Cerebral Cortex, 6(3), 482–489.PubMedCrossRef
Zurück zum Zitat Hertz, J., Roudi, Y., Thorning, A., Tyrcha, J., Aurell, E., & Zeng, H. L. (2010). Inferring network connectivity using kinetic Ising models. BMC Neuroscience, 11(Suppl 1), P51.CrossRef Hertz, J., Roudi, Y., Thorning, A., Tyrcha, J., Aurell, E., & Zeng, H. L. (2010). Inferring network connectivity using kinetic Ising models. BMC Neuroscience, 11(Suppl 1), P51.CrossRef
Zurück zum Zitat Higham, N. J. (2002). Computing the nearest correlation matrix—A problem from finance. IMA Journal of Numerical Analysis, 22(3), 329.CrossRef Higham, N. J. (2002). Computing the nearest correlation matrix—A problem from finance. IMA Journal of Numerical Analysis, 22(3), 329.CrossRef
Zurück zum Zitat Huang, F., & Ogata, Y. (2001). Comparison of two methods for calculating the partition functions of various spatial statistical models. Australian & New Zealand Journal of Statistics, 43(1), 47–65.CrossRef Huang, F., & Ogata, Y. (2001). Comparison of two methods for calculating the partition functions of various spatial statistical models. Australian & New Zealand Journal of Statistics, 43(1), 47–65.CrossRef
Zurück zum Zitat Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.CrossRef Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4), 620–630.CrossRef
Zurück zum Zitat Kappen, H. J., & Rodríguez, F. B. (1998). Efficient learning in Boltzmann machines using linear response theory. Neural Computation, 10(5), 1137–1156.CrossRef Kappen, H. J., & Rodríguez, F. B. (1998). Efficient learning in Boltzmann machines using linear response theory. Neural Computation, 10(5), 1137–1156.CrossRef
Zurück zum Zitat Kohn, A., & Smith, M. A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience, 25(14), 3661–3673.PubMedCrossRef Kohn, A., & Smith, M. A. (2005). Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. Journal of Neuroscience, 25(14), 3661–3673.PubMedCrossRef
Zurück zum Zitat Kohn, A., Zandvakili, A., & Smith, M. A. (2009). Correlations and brain states: From electrophysiology to functional imaging. Current Opinion in Neurobiology, 19(4), 434–438.PubMedCrossRef Kohn, A., Zandvakili, A., & Smith, M. A. (2009). Correlations and brain states: From electrophysiology to functional imaging. Current Opinion in Neurobiology, 19(4), 434–438.PubMedCrossRef
Zurück zum Zitat Macke, J. H., Berens, P., Ecker, A. S., Tolias, A. S., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21(2), 397–423.PubMedCrossRef Macke, J. H., Berens, P., Ecker, A. S., Tolias, A. S., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21(2), 397–423.PubMedCrossRef
Zurück zum Zitat Mak, J. N., & Wolpaw, J. R. (2009). Clinical applications of brain–computer interfaces: Current state and future prospects. Reviews on Biomedical Engineering, 2, 187–199. Mak, J. N., & Wolpaw, J. R. (2009). Clinical applications of brain–computer interfaces: Current state and future prospects. Reviews on Biomedical Engineering, 2, 187–199.
Zurück zum Zitat Montani, F., Kohn, A., Smith, M. A., & Schultz, S. R. (2007). The role of correlations in direction and contrast coding in the primary visual cortex. Journal of Neuroscience, 27(9), 2338–2348.PubMedCrossRef Montani, F., Kohn, A., Smith, M. A., & Schultz, S. R. (2007). The role of correlations in direction and contrast coding in the primary visual cortex. Journal of Neuroscience, 27(9), 2338–2348.PubMedCrossRef
Zurück zum Zitat Nase, G., Singer, W., Monyer, H., & Engel, A. K. (2003). Features of neuronal synchrony in mouse visual cortex. Journal of Neurophysiology, 90(2), 1115–1123.PubMedCrossRef Nase, G., Singer, W., Monyer, H., & Engel, A. K. (2003). Features of neuronal synchrony in mouse visual cortex. Journal of Neurophysiology, 90(2), 1115–1123.PubMedCrossRef
Zurück zum Zitat Niell, C. M., & Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536.PubMedCrossRef Niell, C. M., & Stryker, M. P. (2008). Highly selective receptive fields in mouse visual cortex. Journal of Neuroscience, 28(30), 7520–7536.PubMedCrossRef
Zurück zum Zitat Ogata, Y., & Tanemura, M. (1984). Likelihood analysis of spatial point patterns. Journal of the Royal Statistical Society. Series B, 46(3), 496–518. Ogata, Y., & Tanemura, M. (1984). Likelihood analysis of spatial point patterns. Journal of the Royal Statistical Society. Series B, 46(3), 496–518.
Zurück zum Zitat Ohiorhenuan, I. E., Mechler, F., Purpura, K. P., Schmid, A. M., Hu, Q., & Victor, J. D. (2010). Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 466(7306), 617–621.PubMedCrossRef Ohiorhenuan, I. E., Mechler, F., Purpura, K. P., Schmid, A. M., Hu, Q., & Victor, J. D. (2010). Sparse coding and high-order correlations in fine-scale cortical networks. Nature, 466(7306), 617–621.PubMedCrossRef
Zurück zum Zitat Oram, M. W., Földiíak, P., Perrett, D. I., Oram, M. W., & Sengpiel, F. (1998). The ‘ideal homunculus’: Decoding neural population signals. Trends in Neurosciences, 21(6), 259–265.PubMedCrossRef Oram, M. W., Földiíak, P., Perrett, D. I., Oram, M. W., & Sengpiel, F. (1998). The ‘ideal homunculus’: Decoding neural population signals. Trends in Neurosciences, 21(6), 259–265.PubMedCrossRef
Zurück zum Zitat Panzeri, S., & Schultz, S. R. (2001). A unified approach to the study of temporal, correlational, and rate coding. Neural Computation, 13(6), 1311–1349.PubMedCrossRef Panzeri, S., & Schultz, S. R. (2001). A unified approach to the study of temporal, correlational, and rate coding. Neural Computation, 13(6), 1311–1349.PubMedCrossRef
Zurück zum Zitat Panzeri, S., Schultz, S. R., Treves, A., & Rolls, E. T. (1999a). Correlations and the encoding of information in the nervous system. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1423), 1001–1012.PubMedCrossRef Panzeri, S., Schultz, S. R., Treves, A., & Rolls, E. T. (1999a). Correlations and the encoding of information in the nervous system. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266(1423), 1001–1012.PubMedCrossRef
Zurück zum Zitat Panzeri, S., Treves, A., Schultz, S., & Rolls, E. T. (1999b). On decoding the responses of a population of neurons from short time windows. Neural Computation, 11(7), 1553–1577.PubMedCrossRef Panzeri, S., Treves, A., Schultz, S., & Rolls, E. T. (1999b). On decoding the responses of a population of neurons from short time windows. Neural Computation, 11(7), 1553–1577.PubMedCrossRef
Zurück zum Zitat Petersen, R. S., Panzeri, S., & Diamond, M. E. (2001). Population coding of stimulus location in rat somatosensory cortex. Neuron, 32(3), 503–514.PubMedCrossRef Petersen, R. S., Panzeri, S., & Diamond, M. E. (2001). Population coding of stimulus location in rat somatosensory cortex. Neuron, 32(3), 503–514.PubMedCrossRef
Zurück zum Zitat Plefka, T. (2006). Expansion of the Gibbs potential for quantum many-body systems: General formalism with applications to the spin glass and the weakly nonideal Bose gas. Physical Review E, 73(1), 016129.CrossRef Plefka, T. (2006). Expansion of the Gibbs potential for quantum many-body systems: General formalism with applications to the spin glass and the weakly nonideal Bose gas. Physical Review E, 73(1), 016129.CrossRef
Zurück zum Zitat Pola, G., Thiele, A., Hoffmann, K., & Panzeri, S. (2003). An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network-Computation in Neural Systems, 14(1), 35–60.CrossRef Pola, G., Thiele, A., Hoffmann, K., & Panzeri, S. (2003). An exact method to quantify the information transmitted by different mechanisms of correlational coding. Network-Computation in Neural Systems, 14(1), 35–60.CrossRef
Zurück zum Zitat Reich, D. S., Mechler, F., & Victor, J. D. (2001). Independent and redundant information in nearby cortical neurons. Science, 294(5551), 2566–2568.PubMedCrossRef Reich, D. S., Mechler, F., & Victor, J. D. (2001). Independent and redundant information in nearby cortical neurons. Science, 294(5551), 2566–2568.PubMedCrossRef
Zurück zum Zitat Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.PubMedCrossRef Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., et al. (2010). The asynchronous state in cortical circuits. Science, 327(5965), 587–590.PubMedCrossRef
Zurück zum Zitat Roudi, Y., Aurell, E., & Hertz, J. A. (2009a). Statistical physics of pairwise probability models. Frontiers in Computational Neuroscience, 3:22, 1–15. Roudi, Y., Aurell, E., & Hertz, J. A. (2009a). Statistical physics of pairwise probability models. Frontiers in Computational Neuroscience, 3:22, 1–15.
Zurück zum Zitat Roudi, Y., & Hertz, J. (2011). Mean field theory for non-equilibrium network reconstruction. Physical Review Letters, 106, 048702.CrossRef Roudi, Y., & Hertz, J. (2011). Mean field theory for non-equilibrium network reconstruction. Physical Review Letters, 106, 048702.CrossRef
Zurück zum Zitat Roudi, Y., Nirenberg, S., & Latham, P. E. (2009b). Pairwise maximum entropy models for studying large biological systems: When they can work and when they can’t. PLoS Computational Biology, 5(5), e1000380.CrossRef Roudi, Y., Nirenberg, S., & Latham, P. E. (2009b). Pairwise maximum entropy models for studying large biological systems: When they can work and when they can’t. PLoS Computational Biology, 5(5), e1000380.CrossRef
Zurück zum Zitat Roudi, Y., Tyrcha, J., & Hertz, J. (2009c). Ising model for neural data: Model quality and approximate methods for extracting functional connectivity. Physical Review E, 79(5), 051915 (12 pages). Roudi, Y., Tyrcha, J., & Hertz, J. (2009c). Ising model for neural data: Model quality and approximate methods for extracting functional connectivity. Physical Review E, 79(5), 051915 (12 pages).
Zurück zum Zitat Samonds, J. M., & Bonds, A. B. (2005). Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. Journal of Neurophysiology, 93(1), 223–236.PubMedCrossRef Samonds, J. M., & Bonds, A. B. (2005). Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex. Journal of Neurophysiology, 93(1), 223–236.PubMedCrossRef
Zurück zum Zitat Santhanam, G., Yu, B. M., Gilja, V., Ryu, S. I., Afshar, A., Sahani, M., et al. (2009). Factor-analysis methods for higher-performance neural prostheses. Journal of Neurophysiology, 102(2), 1315–1330.PubMedCrossRef Santhanam, G., Yu, B. M., Gilja, V., Ryu, S. I., Afshar, A., Sahani, M., et al. (2009). Factor-analysis methods for higher-performance neural prostheses. Journal of Neurophysiology, 102(2), 1315–1330.PubMedCrossRef
Zurück zum Zitat Schneidman, E., Berry II, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007–1012.PubMedCrossRef Schneidman, E., Berry II, M. J., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440(7087), 1007–1012.PubMedCrossRef
Zurück zum Zitat Schultz, S. R., Kitamura, K., Post-Uiterweer, A., Krupic, J., & Hausser, M. (2009). Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. Journal of Neuroscience, 29(25), 8005–8015.PubMedCrossRef Schultz, S. R., Kitamura, K., Post-Uiterweer, A., Krupic, J., & Hausser, M. (2009). Spatial pattern coding of sensory information by climbing fiber-evoked calcium signals in networks of neighboring cerebellar Purkinje cells. Journal of Neuroscience, 29(25), 8005–8015.PubMedCrossRef
Zurück zum Zitat Schultz, S. R., & Panzeri, S. (2001). Temporal correlations and neural spike train entropy. Physical Review Letters, 86(25), 5823–5826.PubMedCrossRef Schultz, S. R., & Panzeri, S. (2001). Temporal correlations and neural spike train entropy. Physical Review Letters, 86(25), 5823–5826.PubMedCrossRef
Zurück zum Zitat Seiler, H., Zhang, Y., Saleem, A., Bream, P., Apergis-Schoute, J., & Schultz, S. R. (2009). Maximum entropy decoding of multivariate neural spike trains. BMC Neuroscience, 10(Suppl 1), P107.CrossRef Seiler, H., Zhang, Y., Saleem, A., Bream, P., Apergis-Schoute, J., & Schultz, S. R. (2009). Maximum entropy decoding of multivariate neural spike trains. BMC Neuroscience, 10(Suppl 1), P107.CrossRef
Zurück zum Zitat Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29(15), 5022–5031.PubMedCrossRef Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29(15), 5022–5031.PubMedCrossRef
Zurück zum Zitat Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26(32), 8254–8266.PubMedCrossRef Shlens, J., Field, G. D., Gauthier, J. L., Grivich, M. I., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. Journal of Neuroscience, 26(32), 8254–8266.PubMedCrossRef
Zurück zum Zitat Tanaka, T. (1998). Mean-field theory of Boltzmann machine learning. Physical Review E, 58(2), 2302–2310.CrossRef Tanaka, T. (1998). Mean-field theory of Boltzmann machine learning. Physical Review E, 58(2), 2302–2310.CrossRef
Zurück zum Zitat Thouless, D. J., Anderson, P. W., & Palmer, R. G. (1977). Solution of solvable model of a spin glass. Philosophical Magazine, 35(3), 593–601.CrossRef Thouless, D. J., Anderson, P. W., & Palmer, R. G. (1977). Solution of solvable model of a spin glass. Philosophical Magazine, 35(3), 593–601.CrossRef
Zurück zum Zitat Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.PubMedCrossRef Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.PubMedCrossRef
Zurück zum Zitat Zohary, E., & Shadlen, M. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370(6485), 140–143.PubMedCrossRef Zohary, E., & Shadlen, M. (1994). Correlated neuronal discharge rate and its implications for psychophysical performance. Nature, 370(6485), 140–143.PubMedCrossRef
Metadaten
Titel
The Ising decoder: reading out the activity of large neural ensembles
verfasst von
Michael T. Schaub
Simon R. Schultz
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0342-z

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Neuroscience 1/2012 Zur Ausgabe

Premium Partner