Skip to main content
Erschienen in: Journal of Materials Science 17/2021

08.03.2021 | Electronic materials

The multi-ferroelectricity in neodymium ferrite with perovskite structure

verfasst von: Chao Zhao, Jiahui Chen, Qingfeng Ding, Mingyu Shang

Erschienen in: Journal of Materials Science | Ausgabe 17/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, single-phase orthoferrite NdFeO3 crystals with the space group of Pbnm were successful prepared via mild hydrothermal method. The NdFeO3 crystal performs a weak antiferromagnetic behavior by magnetic measurement. The Dzyaloshinskii Moriya interaction in NdFeO3 crystal causes an additional canting of the antiferromagnetically ordered spins which induce the ferroelectricity. The saturation electric polarization result is 0.0163 μC/cm2 with coercive field of 6.68 kV/cm, and the Curie temperature is 430 K. So we present the direct experimental evidences that the NdFeO3 sample simultaneously exists the ferroelectricity and weak antiferromagnetic at room temperature. This work can develop a route to obtain more species of multiferroic compounds with perovskite structure.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Spaldin NA, Cheong SW, Ramesh R (2010) Multiferroics: past, present, and future[J]. Phys Today 63(10):38–43 Spaldin NA, Cheong SW, Ramesh R (2010) Multiferroics: past, present, and future[J]. Phys Today 63(10):38–43
2.
Zurück zum Zitat Ye S, Labelle J, Yoon PH et al (2007) Experimental tests of the eigenmode theory of auroral roar fine structure and its application to remote sensing[J]. J Geophys Res Space Phys 112(A12):1–13 Ye S, Labelle J, Yoon PH et al (2007) Experimental tests of the eigenmode theory of auroral roar fine structure and its application to remote sensing[J]. J Geophys Res Space Phys 112(A12):1–13
3.
Zurück zum Zitat Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials J. Nature 442(7104): 759–765 Eerenstein W, Mathur ND, Scott JF (2006) Multiferroic and magnetoelectric materials J. Nature 442(7104): 759–765
4.
Zurück zum Zitat Hoffman J, Pan X, Reiner JW et al (2010) Ferroelectric field effect transistors for memory applications[J]. Adv Mater 22(26–27):2957–2961 Hoffman J, Pan X, Reiner JW et al (2010) Ferroelectric field effect transistors for memory applications[J]. Adv Mater 22(26–27):2957–2961
5.
Zurück zum Zitat Lu H, Bark CW, De Los ODE et al (2012) Mechanical writing of ferroelectric polarization[J]. Science 336(6077):59–61 Lu H, Bark CW, De Los ODE et al (2012) Mechanical writing of ferroelectric polarization[J]. Science 336(6077):59–61
6.
Zurück zum Zitat Garcia V, Bibes M (2014) Ferroelectric tunnel junctions for information storage and processing[J]. Nat Commun 5(1):1–12 Garcia V, Bibes M (2014) Ferroelectric tunnel junctions for information storage and processing[J]. Nat Commun 5(1):1–12
7.
Zurück zum Zitat Sharma P, Zhang Q, Sando D et al (2017) Nonvolatile ferroelectric domain wall memory[J]. Sci Adv 3(6):e1700512 Sharma P, Zhang Q, Sando D et al (2017) Nonvolatile ferroelectric domain wall memory[J]. Sci Adv 3(6):e1700512
9.
Zurück zum Zitat Wang X, Yu P, Lei Z et al (2019) Van der Waals negative capacitance transistors[J]. Nat Commun 10(1):1–8 Wang X, Yu P, Lei Z et al (2019) Van der Waals negative capacitance transistors[J]. Nat Commun 10(1):1–8
10.
Zurück zum Zitat Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity[J]. Nat Mater 6(1):13–20 Cheong SW, Mostovoy M (2007) Multiferroics: a magnetic twist for ferroelectricity[J]. Nat Mater 6(1):13–20
11.
Zurück zum Zitat Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films[J]. Nanoscience And Technology: A Collection of Reviews from Nature Journals, 2010: 20-28 Ramesh R, Spaldin N A. Multiferroics: progress and prospects in thin films[J]. Nanoscience And Technology: A Collection of Reviews from Nature Journals, 2010: 20-28
12.
Zurück zum Zitat Tokura Y (2007) Multiferroics—toward strong coupling between magnetization and polarization in a solid[J]. J Magn Magn Mater 310(2):1145–1150 Tokura Y (2007) Multiferroics—toward strong coupling between magnetization and polarization in a solid[J]. J Magn Magn Mater 310(2):1145–1150
13.
Zurück zum Zitat Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite[J]. Adv Mater 21(24):2463–2485 Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite[J]. Adv Mater 21(24):2463–2485
14.
Zurück zum Zitat Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders[J]. Adv Phys 58(4):321–448 Wang KF, Liu JM, Ren ZF (2009) Multiferroicity: the coupling between magnetic and polarization orders[J]. Adv Phys 58(4):321–448
15.
Zurück zum Zitat Tokura Y, Seki S (2010) Multiferroics with spiral spin orders[J]. Adv Mater 22(14):1554–1565 Tokura Y, Seki S (2010) Multiferroics with spiral spin orders[J]. Adv Mater 22(14):1554–1565
16.
Zurück zum Zitat Fiebig M (2005) Revival of the magnetoelectric effect[J]. J Phys D Appl Phys 38(8):R123 Fiebig M (2005) Revival of the magnetoelectric effect[J]. J Phys D Appl Phys 38(8):R123
17.
Zurück zum Zitat Tokura Y, Kida N (1951) Dynamical magnetoelectric effects in multiferroic oxides[J]. Philos Trans R Soc A: Math, Phys Eng Sci 2011(369):3679–3694 Tokura Y, Kida N (1951) Dynamical magnetoelectric effects in multiferroic oxides[J]. Philos Trans R Soc A: Math, Phys Eng Sci 2011(369):3679–3694
18.
Zurück zum Zitat Vinnik DA, Zhivulin VE, Uchaev DA et al (2021) Effect of titanium substitution and temperature variation on structure and magnetic state of barium hexaferrites[J]. J Alloy Compd 859:158365 Vinnik DA, Zhivulin VE, Uchaev DA et al (2021) Effect of titanium substitution and temperature variation on structure and magnetic state of barium hexaferrites[J]. J Alloy Compd 859:158365
19.
Zurück zum Zitat Kozlovskiy AL, Kenzhina IE, Zdorovets MV (2020) FeCo–Fe2CoO4/Co3O4 nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis[J]. Ceram Int 46(8):10262–10269 Kozlovskiy AL, Kenzhina IE, Zdorovets MV (2020) FeCo–Fe2CoO4/Co3O4 nanocomposites: phase transformations as a result of thermal annealing and practical application in catalysis[J]. Ceram Int 46(8):10262–10269
20.
Zurück zum Zitat Yin L, Mi W (2020) Progress in BiFeO3-based heterostructures: materials, properties and applications[J]. Nanoscale 12(2):477–523 Yin L, Mi W (2020) Progress in BiFeO3-based heterostructures: materials, properties and applications[J]. Nanoscale 12(2):477–523
21.
Zurück zum Zitat Yin L, Wang X, Mi W (2017) Electric-field tunable perpendicular magnetic anisotropy in tetragonal Fe4N/BiFeO3 heterostructures[J]. Appl Phys Lett 111(3):032404 Yin L, Wang X, Mi W (2017) Electric-field tunable perpendicular magnetic anisotropy in tetragonal Fe4N/BiFeO3 heterostructures[J]. Appl Phys Lett 111(3):032404
22.
Zurück zum Zitat Zatsiupa AA, Bashkirov LA, Troyanchuk IO et al (2014) Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite[J]. J Solid State Chem 212:147–150 Zatsiupa AA, Bashkirov LA, Troyanchuk IO et al (2014) Magnetization, magnetic susceptibility, effective magnetic moment of Fe3+ ions in Bi25FeO39 ferrite[J]. J Solid State Chem 212:147–150
23.
Zurück zum Zitat Karpinsky DV, Silibin MV, Trukhanov SV et al (2020) Peculiarities of the crystal structure evolution of BiFeO3-BaTiO3 ceramics across structural phase transitions[J]. Nanomaterials 10(4):801 Karpinsky DV, Silibin MV, Trukhanov SV et al (2020) Peculiarities of the crystal structure evolution of BiFeO3-BaTiO3 ceramics across structural phase transitions[J]. Nanomaterials 10(4):801
24.
Zurück zum Zitat Shvartsman VV, Kleemann W, Haumont R et al (2007) Large bulk polarization and regular domain structure in ceramic BiFeO3[J]. Appl Phys Lett 90(17):172115 Shvartsman VV, Kleemann W, Haumont R et al (2007) Large bulk polarization and regular domain structure in ceramic BiFeO3[J]. Appl Phys Lett 90(17):172115
25.
Zurück zum Zitat Wang J, Neaton J B, Zheng H, et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science 299(5613): 1719–1722. Wang J, Neaton J B, Zheng H, et al (2003) Epitaxial BiFeO3 multiferroic thin film heterostructures[J]. Science 299(5613): 1719–1722.
26.
Zurück zum Zitat Trukhanov A V, Trukhanov S V, Panina L V, et al (2017) Evolution of structure and magnetic properties for BaFe11.9Al0.1019 hexaferrite in a wide temperature range[J]. J Magn Magn Mater 426: 487–496 Trukhanov A V, Trukhanov S V, Panina L V, et al (2017) Evolution of structure and magnetic properties for BaFe11.9Al0.1019 hexaferrite in a wide temperature range[J]. J Magn Magn Mater 426: 487–496
27.
Zurück zum Zitat Turchenko V, Kostishyn VG, Trukhanov S et al (2020) Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions[J]. J Alloy Compd 821:153412 Turchenko V, Kostishyn VG, Trukhanov S et al (2020) Crystal and magnetic structures, magnetic and ferroelectric properties of strontium ferrite partially substituted with in ions[J]. J Alloy Compd 821:153412
28.
Zurück zum Zitat Bersuker IB (2012) Pseudo jahn-teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: The d0–d10 problem[J]. Phys Rev Lett 108(13):137202 Bersuker IB (2012) Pseudo jahn-teller origin of perovskite multiferroics, magnetic-ferroelectric crossover, and magnetoelectric effects: The d0–d10 problem[J]. Phys Rev Lett 108(13):137202
29.
Zurück zum Zitat Tokunaga Y, Taguchi Y, Arima T et al (2012) Electric-field-induced generation and reversal of ferromagnetic moment in ferrites[J]. Nat Phys 8(11):838–844 Tokunaga Y, Taguchi Y, Arima T et al (2012) Electric-field-induced generation and reversal of ferromagnetic moment in ferrites[J]. Nat Phys 8(11):838–844
30.
Zurück zum Zitat Zhao ZY, Wang XM, Fan C et al (2011) Magnetic phase transitions and magnetoelectric coupling of GdFeO3 single crystals probed by low-temperature heat transport[J]. Phys Rev B 83(1):014414 Zhao ZY, Wang XM, Fan C et al (2011) Magnetic phase transitions and magnetoelectric coupling of GdFeO3 single crystals probed by low-temperature heat transport[J]. Phys Rev B 83(1):014414
31.
Zurück zum Zitat Acharya S, Mondal J, Ghosh S et al (2010) Multiferroic behavior of lanthanum orthoferrite (LaFeO3)[J]. Mater Lett 64(3):415–418 Acharya S, Mondal J, Ghosh S et al (2010) Multiferroic behavior of lanthanum orthoferrite (LaFeO3)[J]. Mater Lett 64(3):415–418
32.
Zurück zum Zitat Tokunaga Y, Furukawa N, Sakai H et al (2009) Composite domain walls in a multiferroic perovskite ferrite[J]. Nat Mater 8(7):558–562 Tokunaga Y, Furukawa N, Sakai H et al (2009) Composite domain walls in a multiferroic perovskite ferrite[J]. Nat Mater 8(7):558–562
33.
Zurück zum Zitat Iida S, Ohbayashi K, Kagoshima S. Magnetism of rare earth orthoferrites as revealed from critical phenomena observation[J]. Le Journal de Physique Colloques, 1971, 32(C1): C1–654-C1–656. Iida S, Ohbayashi K, Kagoshima S. Magnetism of rare earth orthoferrites as revealed from critical phenomena observation[J]. Le Journal de Physique Colloques, 1971, 32(C1): C1–654-C1–656.
34.
Zurück zum Zitat Lee JH, Jeong YK, Park JH et al (2011) Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3[J]. Phys Rev Lett 107(11):117201 Lee JH, Jeong YK, Park JH et al (2011) Spin-canting-induced improper ferroelectricity and spontaneous magnetization reversal in SmFeO3[J]. Phys Rev Lett 107(11):117201
35.
Zurück zum Zitat Tokunaga Y, Iguchi S, Arima T et al (2008) Magnetic-field-induced ferroelectric state in DyFeO3[J]. Phys Rev Lett 101(9):097205 Tokunaga Y, Iguchi S, Arima T et al (2008) Magnetic-field-induced ferroelectric state in DyFeO3[J]. Phys Rev Lett 101(9):097205
36.
Zurück zum Zitat Shang M, Zhang C, Zhang T et al (2013) The multiferroic perovskite YFeO3[J]. Appl Phys Lett 102(6):062903 Shang M, Zhang C, Zhang T et al (2013) The multiferroic perovskite YFeO3[J]. Appl Phys Lett 102(6):062903
37.
Zurück zum Zitat Wang PJ, Zhou D, Guo HH et al (2020) Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler[J]. J Mater Chem A 8(22):11124–11132 Wang PJ, Zhou D, Guo HH et al (2020) Ultrahigh enhancement rate of the energy density of flexible polymer nanocomposites using core-shell BaTiO3@MgO structures as the filler[J]. J Mater Chem A 8(22):11124–11132
38.
Zurück zum Zitat Shlimas DI, Zdorovets MV, Kozlovskiy AL (2020) Synthesis and resistance to helium swelling of Li2TiO3 ceramics[J]. J Mater Sci: Mater Electron 31(15):12903–12912 Shlimas DI, Zdorovets MV, Kozlovskiy AL (2020) Synthesis and resistance to helium swelling of Li2TiO3 ceramics[J]. J Mater Sci: Mater Electron 31(15):12903–12912
39.
Zurück zum Zitat Trukhanov S V, Khomchenko V A, Lobanovski L S, et al (2006) Crystal structure and magnetic properties of Ba-ordered manganites Ln0.70Ba0.30MnO3-δ (Ln=Pr, Nd)[J]. J Exp Theor Phys 103(3): 398–410 Trukhanov S V, Khomchenko V A, Lobanovski L S, et al (2006) Crystal structure and magnetic properties of Ba-ordered manganites Ln0.70Ba0.30MnO3-δ (Ln=Pr, Nd)[J]. J Exp Theor Phys 103(3): 398–410
40.
Zurück zum Zitat Kozlovskiy AL, Zdorovets MV (2020) The study of the structural characteristics and catalytic activity of Co/CoCo2O4 nanowires[J]. Compos B Eng 191:107968 Kozlovskiy AL, Zdorovets MV (2020) The study of the structural characteristics and catalytic activity of Co/CoCo2O4 nanowires[J]. Compos B Eng 191:107968
41.
Zurück zum Zitat Troyanchuk I O, Trukhanov S V, Khalyavin D D, et al (2000) Magnetic properties of anion deficit manganites Ln0. 55Ba0. 45MnO3-γ (Ln= La, Nd, Sm, Gd, γ⩽0.37)[J]. J Magn Magn Mater 208(3): 217–220 Troyanchuk I O, Trukhanov S V, Khalyavin D D, et al (2000) Magnetic properties of anion deficit manganites Ln0. 55Ba0. 45MnO3-γ (Ln= La, Nd, Sm, Gd, γ⩽0.37)[J]. J Magn Magn Mater 208(3): 217–220
42.
Zurück zum Zitat Zdorovets MV, Kozlovskiy AL (2020) The effect of lithium doping on the ferroelectric properties of LST ceramics[J]. Ceram Int 46(10):14548–14557 Zdorovets MV, Kozlovskiy AL (2020) The effect of lithium doping on the ferroelectric properties of LST ceramics[J]. Ceram Int 46(10):14548–14557
43.
Zurück zum Zitat Yamashita T, Hayes P (2006) Effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS[J]. J Electron Spectrosc Relat Phenom, 152(1–2): 6–11 Yamashita T, Hayes P (2006) Effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS[J]. J Electron Spectrosc Relat Phenom, 152(1–2): 6–11
44.
Zurück zum Zitat Parida SC, Rakshit SK, Singh Z (2008) Heat capacities, order–disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets[J]. J Solid State Chem 181(1):101–121 Parida SC, Rakshit SK, Singh Z (2008) Heat capacities, order–disorder transitions, and thermodynamic properties of rare-earth orthoferrites and rare-earth iron garnets[J]. J Solid State Chem 181(1):101–121
45.
Zurück zum Zitat Troyanchuk IO, Khalyavin DD, Trukhanov SV et al (1999) Magnetic phase diagrams of the manganites Ln1-xBaxMnO3 (Ln=Nd, Sm)[J]. J Phys: Condens Matter 11(44):8707 Troyanchuk IO, Khalyavin DD, Trukhanov SV et al (1999) Magnetic phase diagrams of the manganites Ln1-xBaxMnO3 (Ln=Nd, Sm)[J]. J Phys: Condens Matter 11(44):8707
46.
Zurück zum Zitat Trukhanov S V, Trukhanov A V, Vasil’ev A N, et al (2007) Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region[J]. JETP Lett 85(10): 507–512 Trukhanov S V, Trukhanov A V, Vasil’ev A N, et al (2007) Critical behavior of La0.825Sr0.175MnO2.912 anion-deficient manganite in the magnetic phase transition region[J]. JETP Lett 85(10): 507–512
47.
Zurück zum Zitat Sławiński W, Przeniosło R, Sosnowska I et al (2005) Spin reorientation and structural changes in NdFeO3[J]. J Phys: Condens Matter 17(29):4605 Sławiński W, Przeniosło R, Sosnowska I et al (2005) Spin reorientation and structural changes in NdFeO3[J]. J Phys: Condens Matter 17(29):4605
48.
Zurück zum Zitat Vinnik DA, Podgornov FV, Zabeivorota NS et al (2020) Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites[J]. J Magn Magn Mater 498:166190 Vinnik DA, Podgornov FV, Zabeivorota NS et al (2020) Effect of treatment conditions on structure and magnetodielectric properties of barium hexaferrites[J]. J Magn Magn Mater 498:166190
49.
Zurück zum Zitat Trukhanov AV, Astapovich KA, Almessiere MA et al (2020) Pecularities of the magnetic structure and microwave properties in Ba(Fe-xScx) O (x<) hexaferrites [J]. J Alloys Comp 822: 153575 Trukhanov AV, Astapovich KA, Almessiere MA et al (2020) Pecularities of the magnetic structure and microwave properties in Ba(Fe-xScx) O (x<) hexaferrites [J]. J Alloys Comp 822: 153575
Metadaten
Titel
The multi-ferroelectricity in neodymium ferrite with perovskite structure
verfasst von
Chao Zhao
Jiahui Chen
Qingfeng Ding
Mingyu Shang
Publikationsdatum
08.03.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 17/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05975-2

Weitere Artikel der Ausgabe 17/2021

Journal of Materials Science 17/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.