Skip to main content
Erschienen in: Learning & Behavior 3/2018

12.03.2018

The neuroscience of perceptual categorization in pigeons: A mechanistic hypothesis

verfasst von: Onur Güntürkün, Charlotte Koenen, Fabrizio Iovine, Alexis Garland, Roland Pusch

Erschienen in: Learning & Behavior | Ausgabe 3/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We are surrounded by an endless variation of objects. The ability to categorize these objects represents a core cognitive competence of humans and possibly all vertebrates. Research on category learning in nonhuman animals started with the seminal studies of Richard Herrnstein on the category “human” in pigeons. Since then, we have learned that pigeons are able to categorize a large number of stimulus sets, ranging from Cubist paintings to English orthography. Strangely, this prolific field has largely neglected to also study the avian neurobiology of categorization. Here, we present a hypothesis that combines experimental results and theories from categorization research in pigeons with neurobiological insights on visual processing and dopamine-mediated learning in primates. We conclude that in both fields, similar conclusions on the mechanisms of perceptual categorization have been drawn, despite very little cross-reference or communication between these two areas to date. We hypothesize that perceptual categorization is a two-component process in which stimulus features are first rapidly extracted in a feed-forward process, thereby enabling a fast subdivision along multiple category borders. In primates this seems to happen in the inferotemporal cortex, while pigeons may primarily use a cluster of associative visual forebrain areas. The second process rests on dopaminergic error-prediction learning that enables prefrontal areas to connect top down the relevant visual category dimension to the appropriate action dimension.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Astley, S. L., & Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons. All negative stimuli are not created equal. Journal of Experimental Psychology: Animal Behavior Processes, 18, 193–207. Astley, S. L., & Wasserman, E. A. (1992). Categorical discrimination and generalization in pigeons. All negative stimuli are not created equal. Journal of Experimental Psychology: Animal Behavior Processes, 18, 193–207.
Zurück zum Zitat Aust, U., & Huber, L., (2001). The role of item- and category-specific information in the discrimination of people versus nonpeople images by pigeons. Animal Learning & Behavior, 29, 107–119. Aust, U., & Huber, L., (2001). The role of item- and category-specific information in the discrimination of people versus nonpeople images by pigeons. Animal Learning & Behavior, 29, 107–119.
Zurück zum Zitat Aust, U., & Huber, L., (2002). Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Animal Learning & Behavior, 30, 165–176. Aust, U., & Huber, L., (2002). Target-defining features in a “people-present/people-absent” discrimination task by pigeons. Animal Learning & Behavior, 30, 165–176.
Zurück zum Zitat Azizi, A. H., Pusch, R., Koenen, C., Klatt, S., Kellermann, J., Güntürkün, O., & Cheng, S. (2018). Revealing category representation in visual forebrain areas of pigeons using a multi-variate approach. Manuscript submitted for publication. Azizi, A. H., Pusch, R., Koenen, C., Klatt, S., Kellermann, J., Güntürkün, O., & Cheng, S. (2018). Revealing category representation in visual forebrain areas of pigeons using a multi-variate approach. Manuscript submitted for publication.
Zurück zum Zitat Baker, C. I., Behrmann, M., & Olson, C. R. (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 5, 1210–1216.PubMed Baker, C. I., Behrmann, M., & Olson, C. R. (2002). Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. Nature Neuroscience, 5, 1210–1216.PubMed
Zurück zum Zitat Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11, 211–227. Barsalou, L. W. (1983). Ad hoc categories. Memory & Cognition, 11, 211–227.
Zurück zum Zitat Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141.PubMedPubMedCentral Bayer, H. M., & Glimcher, P. W. (2005). Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron, 47, 129–141.PubMedPubMedCentral
Zurück zum Zitat Benard, B., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Animal Cognition, 9, 257–270.PubMed Benard, B., Stach, S., & Giurfa, M. (2006). Categorization of visual stimuli in the honeybee Apis mellifera. Animal Cognition, 9, 257–270.PubMed
Zurück zum Zitat Castro, L., & Wasserman, E. A. (2014). Pigeons’ tracking of relevant attributes in categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 195–211. Castro, L., & Wasserman, E. A. (2014). Pigeons’ tracking of relevant attributes in categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 40, 195–211.
Zurück zum Zitat Castro, L., & Wasserman, E. A. (2017) Feature predictiveness and selective attention in pigeons’ categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 43, 231–242. Castro, L., & Wasserman, E. A. (2017) Feature predictiveness and selective attention in pigeons’ categorization learning. Journal of Experimental Psychology: Animal Learning and Cognition, 43, 231–242.
Zurück zum Zitat Cerella, J. (1979). Visual classes and natural categories in the pigeon. Journal of Experimental Psychology: Human Perception and Performance, 5, 68–77.PubMed Cerella, J. (1979). Visual classes and natural categories in the pigeon. Journal of Experimental Psychology: Human Perception and Performance, 5, 68–77.PubMed
Zurück zum Zitat Cohen, H., & Lefebvre, C. (2005). Handbook of categorization in cognitive science. Amsterdam, Netherlands: Elsevier. Cohen, H., & Lefebvre, C. (2005). Handbook of categorization in cognitive science. Amsterdam, Netherlands: Elsevier.
Zurück zum Zitat Colombo, M., Frost, N., & Steedman, W. (2001). Responses of ectostriatal neurons during delayed matching-to-sample behavior in pigeons (Columba livia). Brain Research, 917, 55–66.PubMed Colombo, M., Frost, N., & Steedman, W. (2001). Responses of ectostriatal neurons during delayed matching-to-sample behavior in pigeons (Columba livia). Brain Research, 917, 55–66.PubMed
Zurück zum Zitat Cook, R. G., Wright, A. A., & Drachman, E. E. (2013). Categorization of birds, mammals, and chimeras by pigeons. Behavioral Processes, 93, 98–110. Cook, R. G., Wright, A. A., & Drachman, E. E. (2013). Categorization of birds, mammals, and chimeras by pigeons. Behavioral Processes, 93, 98–110.
Zurück zum Zitat Curran, T., Tanaka, J. W., & Weiskopf, D. M. (2002). An electrophysiological comparison of visual categorization and recognition memory. Cognitive, Affective, & Behavioral Neuroscience, 2, 1–18. Curran, T., Tanaka, J. W., & Weiskopf, D. M. (2002). An electrophysiological comparison of visual categorization and recognition memory. Cognitive, Affective, & Behavioral Neuroscience, 2, 1–18.
Zurück zum Zitat DiCarlo, J. J., & Maunsell, J. H. R. (2000). Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nature Neuroscience, 3, 814–821.PubMed DiCarlo, J. J., & Maunsell, J. H. R. (2000). Form representation in monkey inferotemporal cortex is virtually unaltered by free viewing. Nature Neuroscience, 3, 814–821.PubMed
Zurück zum Zitat DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73. 415–434. DiCarlo, J. J., Zoccolan, D., & Rust, N. C. (2012). How does the brain solve visual object recognition? Neuron, 73. 415–434.
Zurück zum Zitat Diekamp, B., Kalt, T., Ruhm, A., Koch, M., & Güntürkün, O. (2000). Impairment in a discrimination reversal task after D1-receptor blockade in the pigeon ‘prefrontal cortex’. Behavioral Neuroscience, 114, 1145–1155.PubMed Diekamp, B., Kalt, T., Ruhm, A., Koch, M., & Güntürkün, O. (2000). Impairment in a discrimination reversal task after D1-receptor blockade in the pigeon ‘prefrontal cortex’. Behavioral Neuroscience, 114, 1145–1155.PubMed
Zurück zum Zitat Dittrich, L., Rose, J., Buschmann, J. U. F., Bourdonnais, M., & Günttürkün, O. (2010). Peck tracking: A method for localizing critical features within complex pictures for pigeons. Animal Cognition, 13, 133–143.PubMed Dittrich, L., Rose, J., Buschmann, J. U. F., Bourdonnais, M., & Günttürkün, O. (2010). Peck tracking: A method for localizing critical features within complex pictures for pigeons. Animal Cognition, 13, 133–143.PubMed
Zurück zum Zitat Ditz, H. M., & Nieder A. (2015). Neurons selective to the number of visual items in the corvid songbird endbrain. Proceedings of the National Academy of Sciences of the United States of America, 112, 7827–7832.PubMedPubMedCentral Ditz, H. M., & Nieder A. (2015). Neurons selective to the number of visual items in the corvid songbird endbrain. Proceedings of the National Academy of Sciences of the United States of America, 112, 7827–7832.PubMedPubMedCentral
Zurück zum Zitat Durstewitz, D., Kröner, S., & Güntürkün, O. (1999). The dopaminergic innervation of the avian telencephalon. Progress in Neurobiology, 59, 161–195.PubMed Durstewitz, D., Kröner, S., & Güntürkün, O. (1999). The dopaminergic innervation of the avian telencephalon. Progress in Neurobiology, 59, 161–195.PubMed
Zurück zum Zitat Durstewitz, D., Kröner, S., Hemmings, H. C., Jr., & Güntürkün, O. (1998). The dopaminergic innervation of the pigeon telencephalon: Distribution of DARPP-32 and coocurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience, 83, 763–779.PubMed Durstewitz, D., Kröner, S., Hemmings, H. C., Jr., & Güntürkün, O. (1998). The dopaminergic innervation of the pigeon telencephalon: Distribution of DARPP-32 and coocurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience, 83, 763–779.PubMed
Zurück zum Zitat Freedman, D. J., & Miller, E. K. (2008). Neural mechanisms of visual categorization: Insights from neurophysiology. Neuroscience and Biobehavioral Reviews, 32, 311–329.PubMed Freedman, D. J., & Miller, E. K. (2008). Neural mechanisms of visual categorization: Insights from neurophysiology. Neuroscience and Biobehavioral Reviews, 32, 311–329.PubMed
Zurück zum Zitat Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.PubMed Freedman, D. J., Riesenhuber, M., Poggio, T., & Miller, E. K. (2001). Categorical representation of visual stimuli in the primate prefrontal cortex. Science, 291, 312–316.PubMed
Zurück zum Zitat Gadagkar, V., Puzerey, P. A., Chen, R., Baird-Daniel, E., Farhang, A. R., & Goldberg, J. H. (2016). Dopamine neurons encode performance error in singing birds. Science, 354, 1278–1282.PubMedPubMedCentral Gadagkar, V., Puzerey, P. A., Chen, R., Baird-Daniel, E., Farhang, A. R., & Goldberg, J. H. (2016). Dopamine neurons encode performance error in singing birds. Science, 354, 1278–1282.PubMedPubMedCentral
Zurück zum Zitat Gale, T. M., & Laws, K. R. (2006). Category-specificity can emerge from bottom-up visual characteristics: Evidence from a modular neural network. Brain and Cognition, 61, 269–279.PubMed Gale, T. M., & Laws, K. R. (2006). Category-specificity can emerge from bottom-up visual characteristics: Evidence from a modular neural network. Brain and Cognition, 61, 269–279.PubMed
Zurück zum Zitat Gibson, B., Wasserman, E. A., Gosselin, F., & Schyns, P. G. (2005). Applying bubbles to localize features that control pigeons’ visual discrimination behavior. Journal of Experimental Psychology: Animal Behavior Processes, 31, 376–382.PubMed Gibson, B., Wasserman, E. A., Gosselin, F., & Schyns, P. G. (2005). Applying bubbles to localize features that control pigeons’ visual discrimination behavior. Journal of Experimental Psychology: Animal Behavior Processes, 31, 376–382.PubMed
Zurück zum Zitat Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117, 227–247. Gluck, M. A., & Bower, G. H. (1988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 117, 227–247.
Zurück zum Zitat Goldstone, R. L., Kersten, A., & Carvalho, P. F. (2017). Categorization and concepts. In J. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience, Volume 3: Language & thought (4th ed., pp. 275–317). Hoboken, NJ: Wiley. Goldstone, R. L., Kersten, A., & Carvalho, P. F. (2017). Categorization and concepts. In J. Wixted (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience, Volume 3: Language & thought (4th ed., pp. 275–317). Hoboken, NJ: Wiley.
Zurück zum Zitat Grainger, J., Dufau, S., Montant, M., Ziegler, J. C., & Fagot, J. (2012). Orthographic processing in baboons (Papio papio). Science, 336, 245–248.PubMed Grainger, J., Dufau, S., Montant, M., Ziegler, J. C., & Fagot, J. (2012). Orthographic processing in baboons (Papio papio). Science, 336, 245–248.PubMed
Zurück zum Zitat Greene, S. L. (1983). Feature memorization in pigeon concept formation. In M. L. Commons, R. J. Herrnstein, & A. R. Wagner (Eds.), Quantitative analyses of behavior: Discrimination processes (Vol. 4., pp. 209–229). Cambridge, MA: Ballinger. Greene, S. L. (1983). Feature memorization in pigeon concept formation. In M. L. Commons, R. J. Herrnstein, & A. R. Wagner (Eds.), Quantitative analyses of behavior: Discrimination processes (Vol. 4., pp. 209–229). Cambridge, MA: Ballinger.
Zurück zum Zitat Grill-Spector, K., & Kanwisher, N. (2005) Visual recognition: As soon as you know it is there, you know what it is. Psychological Science, 16, 152–160.PubMed Grill-Spector, K., & Kanwisher, N. (2005) Visual recognition: As soon as you know it is there, you know what it is. Psychological Science, 16, 152–160.PubMed
Zurück zum Zitat Güntürkün, O. (1997) Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent: Functional similarities to the mammalian prefrontal system? Journal of Brain Research, 38, 133–143.PubMed Güntürkün, O. (1997) Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent: Functional similarities to the mammalian prefrontal system? Journal of Brain Research, 38, 133–143.PubMed
Zurück zum Zitat Güntürkün, O. (2005). The avian ‘prefrontal cortex’ and cognition. Current Opinion in Neurobiology, 15, 686–693.PubMed Güntürkün, O. (2005). The avian ‘prefrontal cortex’ and cognition. Current Opinion in Neurobiology, 15, 686–693.PubMed
Zurück zum Zitat Güntürkün, O. (2012). Evolution of cognitive neural structures. Psychological Research, 76, 212–219.PubMed Güntürkün, O. (2012). Evolution of cognitive neural structures. Psychological Research, 76, 212–219.PubMed
Zurück zum Zitat Güntürkün, O., & Bugnyar, T. (2016) Cognition without cortex. Trends in Cognitive Science, 20, 291–303. Güntürkün, O., & Bugnyar, T. (2016) Cognition without cortex. Trends in Cognitive Science, 20, 291–303.
Zurück zum Zitat Güntürkün, O., & Hahmann, U. (1998). Functional subdivisions of the ascending visual pathways in the pigeon. Behavioural Brain Research, 98, 193–201. Güntürkün, O., & Hahmann, U. (1998). Functional subdivisions of the ascending visual pathways in the pigeon. Behavioural Brain Research, 98, 193–201.
Zurück zum Zitat Güntürkün, O., Verhoye, M., De Groof, G., & Van der Linden, A. (2013). A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Structure & Function, 281, 269–281 Güntürkün, O., Verhoye, M., De Groof, G., & Van der Linden, A. (2013). A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain. Brain Structure & Function, 281, 269–281
Zurück zum Zitat Hegdé, J., Bart, E., & Daniel, K. (2008). Fragment-based learning of visual object categories. Current Biology, 18, 597–601.PubMed Hegdé, J., Bart, E., & Daniel, K. (2008). Fragment-based learning of visual object categories. Current Biology, 18, 597–601.PubMed
Zurück zum Zitat Herold, C., Joshi, I., Hollmann, M., & Güntürkün, O. (2012). Prolonged cognitive training increases D5 receptor expression in the avian prefrontal cortex. PLoS ONE, 7, e36484.PubMedPubMedCentral Herold, C., Joshi, I., Hollmann, M., & Güntürkün, O. (2012). Prolonged cognitive training increases D5 receptor expression in the avian prefrontal cortex. PLoS ONE, 7, e36484.PubMedPubMedCentral
Zurück zum Zitat Herold, C., Palomero-Gallagher, N., Hellmann, B., Kröner, S., Theiss, C., Güntürkün, O. & Zilles, K. (2011). The receptorarchitecture of the pigeons’ nidopallium caudolaterale—An avian analogue to the prefrontal cortex. Brain Structure & Function, 216, 239–254. Herold, C., Palomero-Gallagher, N., Hellmann, B., Kröner, S., Theiss, C., Güntürkün, O. & Zilles, K. (2011). The receptorarchitecture of the pigeons’ nidopallium caudolaterale—An avian analogue to the prefrontal cortex. Brain Structure & Function, 216, 239–254.
Zurück zum Zitat Herrnstein, R. J. (1990). Levels of stimulus control: A functional approach. Cognition, 37, 133–166.PubMed Herrnstein, R. J. (1990). Levels of stimulus control: A functional approach. Cognition, 37, 133–166.PubMed
Zurück zum Zitat Herrnstein, R. J., & De Villiers, P. A. (1980). Fish as a natural category for people and pigeons. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 14, pp. 59–95). New York, NY: Academic Press. Herrnstein, R. J., & De Villiers, P. A. (1980). Fish as a natural category for people and pigeons. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 14, pp. 59–95). New York, NY: Academic Press.
Zurück zum Zitat Herrnstein, R. J., & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146, 549–551.PubMed Herrnstein, R. J., & Loveland, D. H. (1964). Complex visual concept in the pigeon. Science, 146, 549–551.PubMed
Zurück zum Zitat Huber, L., Troje, N. F., Loidolt, M., Aust, U., & Grass, D. (2000). Natural categorization through multiple feature learning in pigeons. The Quarterly Journal of Experimental Psychology Section B, 53, 341–357. Huber, L., Troje, N. F., Loidolt, M., Aust, U., & Grass, D. (2000). Natural categorization through multiple feature learning in pigeons. The Quarterly Journal of Experimental Psychology Section B, 53, 341–357.
Zurück zum Zitat Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science, 310, 863–866.PubMed Hung, C. P., Kreiman, G., Poggio, T., & DiCarlo, J. J. (2005). Fast readout of object identity from macaque inferior temporal cortex. Science, 310, 863–866.PubMed
Zurück zum Zitat Jitsumori, M., & Yoshihara, M. (1997). Categorical discrimination of human facial expressions by pigeons: A test of the linear feature model. The Quarterly Journal of Experimental Psychology Section B, 50, 253–268. Jitsumori, M., & Yoshihara, M. (1997). Categorical discrimination of human facial expressions by pigeons: A test of the linear feature model. The Quarterly Journal of Experimental Psychology Section B, 50, 253–268.
Zurück zum Zitat Johnston, M., Anderson, C. & Colombo, M. (2017a). Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behavioural Brain Research, 317, 382–392.PubMed Johnston, M., Anderson, C. & Colombo, M. (2017a). Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behavioural Brain Research, 317, 382–392.PubMed
Zurück zum Zitat Johnston, M., Anderson, C., & Colombo, M. (2017b). Pigeon NCL and NFL neuronal activity represents neural correlates of the sample. Behavioral Neuroscience, 131, 213–219.PubMed Johnston, M., Anderson, C., & Colombo, M. (2017b). Pigeon NCL and NFL neuronal activity represents neural correlates of the sample. Behavioral Neuroscience, 131, 213–219.PubMed
Zurück zum Zitat Kalenscher, T., Ohmann, T. & Güntürkün, O. (2006). The neuroscience of impulsive and self-controlled decisions. International Journal of Psychophysiology, 62, 203–211.PubMed Kalenscher, T., Ohmann, T. & Güntürkün, O. (2006). The neuroscience of impulsive and self-controlled decisions. International Journal of Psychophysiology, 62, 203–211.PubMed
Zurück zum Zitat Kalenscher, T. Windmann, S., Rose, J., Diekamp, B., Güntürkün, O., & Colombo, M. (2005). Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Current Biology, 15, 594–602.PubMed Kalenscher, T. Windmann, S., Rose, J., Diekamp, B., Güntürkün, O., & Colombo, M. (2005). Single units in the pigeon brain integrate reward amount and time-to-reward in an impulsive choice task. Current Biology, 15, 594–602.PubMed
Zurück zum Zitat Karakuyu, D., Herold, C., Güntürkün, O., & Diekamp, B. (2007). Differential increase of extracellular dopamine and serotonin in the “prefrontal cortex” and striatum of pigeons during working memory. European Journal of Neuroscience, 26, 2293–2302.PubMed Karakuyu, D., Herold, C., Güntürkün, O., & Diekamp, B. (2007). Differential increase of extracellular dopamine and serotonin in the “prefrontal cortex” and striatum of pigeons during working memory. European Journal of Neuroscience, 26, 2293–2302.PubMed
Zurück zum Zitat Kauffmann, L., Bourgin, J., Guyader, N., & Peyrin, C. (2015). The neural bases of the semantic interference of spatial frequency-based information in scenes. Journal of Cognitive Neuroscience, 27, 2394–2405.PubMed Kauffmann, L., Bourgin, J., Guyader, N., & Peyrin, C. (2015). The neural bases of the semantic interference of spatial frequency-based information in scenes. Journal of Cognitive Neuroscience, 27, 2394–2405.PubMed
Zurück zum Zitat Keller, F. S., & Schoenfeld, W. N. (1950). Principles of psychology. New York, NY: Appleton-Century-Crofts. Keller, F. S., & Schoenfeld, W. N. (1950). Principles of psychology. New York, NY: Appleton-Century-Crofts.
Zurück zum Zitat Kendrick, D. F., Wright, A. A., & Cook, R. G. (1990). On the role of memory in concept-learning by pigeons. The Psychological Record, 40, 359–371. Kendrick, D. F., Wright, A. A., & Cook, R. G. (1990). On the role of memory in concept-learning by pigeons. The Psychological Record, 40, 359–371.
Zurück zum Zitat Kirsch, J. A., Hausmann, M., Vlachos, J., Rose J., Yim, M. Y., Aertsen, A., & Güntürkün, O. (2009). Neuronal encoding of meaning: Establishing category-selective response patterns in the avian “prefrontal cortex”. Behavioural Brain Research, 198, 214–223.PubMed Kirsch, J. A., Hausmann, M., Vlachos, J., Rose J., Yim, M. Y., Aertsen, A., & Güntürkün, O. (2009). Neuronal encoding of meaning: Establishing category-selective response patterns in the avian “prefrontal cortex”. Behavioural Brain Research, 198, 214–223.PubMed
Zurück zum Zitat Koenen, C., Millar, J., & Colombo, M. (2013). How bad do you want it? Reward modulation in the avian nidopallium caudolaterale. Behavioural Neuroscience, 127, 544–554. Koenen, C., Millar, J., & Colombo, M. (2013). How bad do you want it? Reward modulation in the avian nidopallium caudolaterale. Behavioural Neuroscience, 127, 544–554.
Zurück zum Zitat Koenen, C., Pusch, R., Bröker, F., Thiele, S., & Güntürkün, O. (2016). Categories in the pigeon brain: A reverse engineering approach. Journal of Experimental Analysis of Behavior, 105, 111–122. Koenen, C., Pusch, R., Bröker, F., Thiele, S., & Güntürkün, O. (2016). Categories in the pigeon brain: A reverse engineering approach. Journal of Experimental Analysis of Behavior, 105, 111–122.
Zurück zum Zitat Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60, 1126–1141.PubMedPubMedCentral Kriegeskorte, N., Mur, M., Ruff, D. A., Kiani, R., Bodurka, J., Esteky, H., … Bandettini, P. A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron, 60, 1126–1141.PubMedPubMedCentral
Zurück zum Zitat Kröner, S., & Güntürkün, O. (1999). Afferent and efferent connections of the caudolateral neostriatum in the pigeon Columba livia: A retro- and anterograde pathway tracing study. Journal of Comparative Neurology, 407, 228–260.PubMed Kröner, S., & Güntürkün, O. (1999). Afferent and efferent connections of the caudolateral neostriatum in the pigeon Columba livia: A retro- and anterograde pathway tracing study. Journal of Comparative Neurology, 407, 228–260.PubMed
Zurück zum Zitat Kromrey, S., Maestri, M., Hauffen, K., Bart, E., & Hegdé, J. (2010). Fragment-based learning of visual object categories in non-human primates. PLoS ONE, 5, e15444.PubMedPubMedCentral Kromrey, S., Maestri, M., Hauffen, K., Bart, E., & Hegdé, J. (2010). Fragment-based learning of visual object categories in non-human primates. PLoS ONE, 5, e15444.PubMedPubMedCentral
Zurück zum Zitat Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.PubMed Kruschke, J. K. (1992). ALCOVE: An exemplar-based connectionist model of category learning. Psychological Review, 99, 22–44.PubMed
Zurück zum Zitat Lazareva, O. F., & Wasserman, E. A. (2017). Categories and concepts in animals. In J. Stein (Ed.), Reference module in neuroscience and biobehavioral psychology (pp. 1–29). New York, NY: Elsevier. Lazareva, O. F., & Wasserman, E. A. (2017). Categories and concepts in animals. In J. Stein (Ed.), Reference module in neuroscience and biobehavioral psychology (pp. 1–29). New York, NY: Elsevier.
Zurück zum Zitat Lengersdorf, D., Güntürkün, O., Pusch, R., & Stüttgen, M. C. (2014). Neurons in the pigeon nidopallium caudolaterale signal the selection and execution of perceptual decisions. European Journal of Neuroscience, 40, 3316–3327.PubMed Lengersdorf, D., Güntürkün, O., Pusch, R., & Stüttgen, M. C. (2014). Neurons in the pigeon nidopallium caudolaterale signal the selection and execution of perceptual decisions. European Journal of Neuroscience, 40, 3316–3327.PubMed
Zurück zum Zitat Levenson, R. M., Krupinski, E. A., Navarro, V. M., & Wasserman, E. A. (2015). Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS ONE, 10, e0141357.PubMedPubMedCentral Levenson, R. M., Krupinski, E. A., Navarro, V. M., & Wasserman, E. A. (2015). Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS ONE, 10, e0141357.PubMedPubMedCentral
Zurück zum Zitat Li, N., Cox, D. D., Zoccolan, D., & DiCarlo, J. J. (2009). What response properties do individual neurons need to underlie position and clutter “invariant” object recognition? Journal of Neurophysiology, 102, 360–376.PubMedPubMedCentral Li, N., Cox, D. D., Zoccolan, D., & DiCarlo, J. J. (2009). What response properties do individual neurons need to underlie position and clutter “invariant” object recognition? Journal of Neurophysiology, 102, 360–376.PubMedPubMedCentral
Zurück zum Zitat Linke, M., Bröker, F., Ramscar, M., & Baayen, H. (2017). Are baboons learning “orthographic” representations? Probably not. PLoS ONE, 12, e0183876.PubMedPubMedCentral Linke, M., Bröker, F., Ramscar, M., & Baayen, H. (2017). Are baboons learning “orthographic” representations? Probably not. PLoS ONE, 12, e0183876.PubMedPubMedCentral
Zurück zum Zitat Liu, X., Wan, H., Li, S., Shang, Z., & Shi, L. (2017) The role of nidopallium caudolaterale in the goal-directed behavior of pigeons. Behavioural Brain Research, 326, 112–120.PubMed Liu, X., Wan, H., Li, S., Shang, Z., & Shi, L. (2017) The role of nidopallium caudolaterale in the goal-directed behavior of pigeons. Behavioural Brain Research, 326, 112–120.PubMed
Zurück zum Zitat Lubow, R. E. (1974). High-order concept formation in the pigeon. Journal of the Experimental Analysis of Behavior, 21, 475–483.PubMedPubMedCentral Lubow, R. E. (1974). High-order concept formation in the pigeon. Journal of the Experimental Analysis of Behavior, 21, 475–483.PubMedPubMedCentral
Zurück zum Zitat Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. L., & Miller, E. K. (2016). Gamma and beta bursts underlie working memory. Neuron, 90, 152–164.PubMedPubMedCentral Lundqvist, M., Rose, J., Herman, P., Brincat, S. L., Buschman, T. L., & Miller, E. K. (2016). Gamma and beta bursts underlie working memory. Neuron, 90, 152–164.PubMedPubMedCentral
Zurück zum Zitat Lupyan, G. (2008). From chair to “chair”: A representational shift account of object labeling effects on memory. Journal of Experimental Psychology: General, 137, 348–369. Lupyan, G. (2008). From chair to “chair”: A representational shift account of object labeling effects on memory. Journal of Experimental Psychology: General, 137, 348–369.
Zurück zum Zitat Minamimoto, T., Saunders, R. C., & Richmond, B. J. (2010). Monkeys quickly learn and generalize visual categories without lateral prefrontal cortex. Neuron, 66, 501–507.PubMed Minamimoto, T., Saunders, R. C., & Richmond, B. J. (2010). Monkeys quickly learn and generalize visual categories without lateral prefrontal cortex. Neuron, 66, 501–507.PubMed
Zurück zum Zitat Matsukawa, A., Inoue, S., & Jitsumori, M. (2004). Pigeon’s recognition of cartoons: Effects of fragmentation, scrambling, and deletion of elements. Behavioural Processes, 65, 25–34.PubMed Matsukawa, A., Inoue, S., & Jitsumori, M. (2004). Pigeon’s recognition of cartoons: Effects of fragmentation, scrambling, and deletion of elements. Behavioural Processes, 65, 25–34.PubMed
Zurück zum Zitat Moll, F. W., & Nieder, A. (2015). Cross-modal associative mnemonic signals in crow endbrain neurons. Current Biology, 25, 2196–2201.PubMed Moll, F. W., & Nieder, A. (2015). Cross-modal associative mnemonic signals in crow endbrain neurons. Current Biology, 25, 2196–2201.PubMed
Zurück zum Zitat Moll, F. W., & Nieder, A. (2017). Modality-invariant audio-visual association coding in crow endbrain neurons. Neurobiology of Learning and Memory, 137, 65–76.PubMed Moll, F. W., & Nieder, A. (2017). Modality-invariant audio-visual association coding in crow endbrain neurons. Neurobiology of Learning and Memory, 137, 65–76.PubMed
Zurück zum Zitat Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431, 760–767.PubMed Montague, P. R., Hyman, S. E., & Cohen, J. D. (2004). Computational roles for dopamine in behavioural control. Nature, 431, 760–767.PubMed
Zurück zum Zitat Mouritsen, H., Heyers, D., & Güntürkün, O. (2016). The neural basis of long-distance navigation in birds. Annual Review of Physiology, 78, 133–154.PubMed Mouritsen, H., Heyers, D., & Güntürkün, O. (2016). The neural basis of long-distance navigation in birds. Annual Review of Physiology, 78, 133–154.PubMed
Zurück zum Zitat Nakamura, T., Croft, D., & Westbrook, R. F. (2003). Domestic pigeons (Columba livia) discriminate between photographs of individual pigeons. Animal Learning & Behavior, 31, 307–317. Nakamura, T., Croft, D., & Westbrook, R. F. (2003). Domestic pigeons (Columba livia) discriminate between photographs of individual pigeons. Animal Learning & Behavior, 31, 307–317.
Zurück zum Zitat Nieder, A. (2017). Inside the corvid brain—Probing the physiology of cognition in crows. Current Opinion in Behavioral Sciences, 16, 8–14. Nieder, A. (2017). Inside the corvid brain—Probing the physiology of cognition in crows. Current Opinion in Behavioral Sciences, 16, 8–14.
Zurück zum Zitat Nomoto, K., Schultz, W., Watanabe, T., & Sakagami, M. (2010). Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. Journal of Neuroscience, 30, 10692–10702.PubMed Nomoto, K., Schultz, W., Watanabe, T., & Sakagami, M. (2010). Temporally extended dopamine responses to perceptually demanding reward-predictive stimuli. Journal of Neuroscience, 30, 10692–10702.PubMed
Zurück zum Zitat Pannunzi, M., Gigante, G., Mattia, M., Deco, G., Fusi, S., & Del Giudice, P. (2012). Learning selective top-down control enhances performance in a visual categorization task. Journal of Neurophysiology, 108, 3124–3137.PubMed Pannunzi, M., Gigante, G., Mattia, M., Deco, G., Fusi, S., & Del Giudice, P. (2012). Learning selective top-down control enhances performance in a visual categorization task. Journal of Neurophysiology, 108, 3124–3137.PubMed
Zurück zum Zitat Puig, M. V, Rose, J., Schmidt, R., & Freund, N. (2014). Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Frontiers in Neural Circuits, 8, 93.PubMedPubMedCentral Puig, M. V, Rose, J., Schmidt, R., & Freund, N. (2014). Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Frontiers in Neural Circuits, 8, 93.PubMedPubMedCentral
Zurück zum Zitat Qadri, M. A. J., & Cook, R. G. (2017). Pigeons and humans use action and pose information to categorize complex human behaviors. Vision Research, 131, 16–25.PubMed Qadri, M. A. J., & Cook, R. G. (2017). Pigeons and humans use action and pose information to categorize complex human behaviors. Vision Research, 131, 16–25.PubMed
Zurück zum Zitat Range, F., Viranyi, Z., & Huber, L. (2007). Selective imitation in domestic dogs. Current Biology, 17, 868–872.PubMed Range, F., Viranyi, Z., & Huber, L. (2007). Selective imitation in domestic dogs. Current Biology, 17, 868–872.PubMed
Zurück zum Zitat Remy, M., & Güntürkün, O. (1991). Retinal afferents of the tectum opticum and the nucleus opticus principalis thalami in the pigeon. Journal of Comparative Neurology, 305, 57–70.PubMed Remy, M., & Güntürkün, O. (1991). Retinal afferents of the tectum opticum and the nucleus opticus principalis thalami in the pigeon. Journal of Comparative Neurology, 305, 57–70.PubMed
Zurück zum Zitat Rescorla, R. A., & Wagner, A. W. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical Conditioning II: Current research and theory (pp. 64–99). New York, NY: Appleton-Century-Crofts. Rescorla, R. A., & Wagner, A. W. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical Conditioning II: Current research and theory (pp. 64–99). New York, NY: Appleton-Century-Crofts.
Zurück zum Zitat Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439. Rosch, E., Mervis, C. B., Gray, W. D., Johnson, D. M., & Boyes-Braem, P. (1976). Basic objects in natural categories. Cognitive Psychology, 8, 382–439.
Zurück zum Zitat Rose, J., & Colombo, M. (2005). Neural correlates of executive control in the avian brain. PLoS Biology, 3, e190.PubMedPubMedCentral Rose, J., & Colombo, M. (2005). Neural correlates of executive control in the avian brain. PLoS Biology, 3, e190.PubMedPubMedCentral
Zurück zum Zitat Rose, J., Schiffer, A.-M., Dittrich, L., & Güntürkün, O. (2010). The role of dopamine in maintenance and distractability of attention in the ‘prefrontal cortex’ of pigeons. Neuroscience, 167, 232–237.PubMed Rose, J., Schiffer, A.-M., Dittrich, L., & Güntürkün, O. (2010). The role of dopamine in maintenance and distractability of attention in the ‘prefrontal cortex’ of pigeons. Neuroscience, 167, 232–237.PubMed
Zurück zum Zitat Rose, J., Schiffer, A.-M., & Güntürkün, O. (2013). Striatal dopamine D1 receptors are involved in the dissociation of learning based on reward-magnitude. Neuroscience, 230, 132–138.PubMed Rose, J., Schiffer, A.-M., & Güntürkün, O. (2013). Striatal dopamine D1 receptors are involved in the dissociation of learning based on reward-magnitude. Neuroscience, 230, 132–138.PubMed
Zurück zum Zitat Rose, J., Schmidt, J., Grabemann, M., & Güntürkün, O. (2009). Theory meets pigeons: The influence of reward magnitude on discrimination learning. Behavioural Brain Research, 198, 125–129.PubMed Rose, J., Schmidt, J., Grabemann, M., & Güntürkün, O. (2009). Theory meets pigeons: The influence of reward magnitude on discrimination learning. Behavioural Brain Research, 198, 125–129.PubMed
Zurück zum Zitat Roy, J. E., Riesenhuber, M., Poggio, T., & Miller, E. K. (2010). Prefrontal cortex activity during flexible categorization. Journal of Neuroscience, 30, 8519–8528.PubMed Roy, J. E., Riesenhuber, M., Poggio, T., & Miller, E. K. (2010). Prefrontal cortex activity during flexible categorization. Journal of Neuroscience, 30, 8519–8528.PubMed
Zurück zum Zitat Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back-propagating errors. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (Vol. 1, pp. 1–34). Cambridge, MA: MIT Press,. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by back-propagating errors. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel distributed processing (Vol. 1, pp. 1–34). Cambridge, MA: MIT Press,.
Zurück zum Zitat Sands, S. F., Lincoln, C. E., & Wright, A. A. (1982). Pictorial similarity judgments and the organization of visual memory in the rhesus monkey. Journal of Experimental Psychology: General, 111, 369–389. Sands, S. F., Lincoln, C. E., & Wright, A. A. (1982). Pictorial similarity judgments and the organization of visual memory in the rhesus monkey. Journal of Experimental Psychology: General, 111, 369–389.
Zurück zum Zitat Scarf, D., Boy, K., Uber Reinert, A., Devine, J., Güntürkün, O., & Colombo, M. (2016a). Orthographic processing in pigeons (Columba livia). Proceedings of the National Academy of Sciences of the United States of America, 113, 11272–11276.PubMedPubMedCentral Scarf, D., Boy, K., Uber Reinert, A., Devine, J., Güntürkün, O., & Colombo, M. (2016a). Orthographic processing in pigeons (Columba livia). Proceedings of the National Academy of Sciences of the United States of America, 113, 11272–11276.PubMedPubMedCentral
Zurück zum Zitat Scarf, D., Stuart, M., Johnston, M., & Colombo, M. (2016b). Visual response properties of neurons in four areas of the avian pallium. Journal of Comparative Physiology A, 202, 235–245. Scarf, D., Stuart, M., Johnston, M., & Colombo, M. (2016b). Visual response properties of neurons in four areas of the avian pallium. Journal of Comparative Physiology A, 202, 235–245.
Zurück zum Zitat Scarf, D., Miles, K., Sloan, A., Goulter, N., Hegan, M., Seid-Fatemi, A., … Colombo, M. (2011). Brain cells in the avian ‘prefrontal cortex’ code for features of slot-machine-like gambling. PLoS ONE, 6, e14589.PubMedPubMedCentral Scarf, D., Miles, K., Sloan, A., Goulter, N., Hegan, M., Seid-Fatemi, A., … Colombo, M. (2011). Brain cells in the avian ‘prefrontal cortex’ code for features of slot-machine-like gambling. PLoS ONE, 6, e14589.PubMedPubMedCentral
Zurück zum Zitat Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMed Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80, 1–27.PubMed
Zurück zum Zitat Schultz, W. (2016). Dopamine reward prediction error signaling: A two component response. Nature Reviews Neuroscience, 17, 183–195.PubMedPubMedCentral Schultz, W. (2016). Dopamine reward prediction error signaling: A two component response. Nature Reviews Neuroscience, 17, 183–195.PubMedPubMedCentral
Zurück zum Zitat Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review in Neuroscience, 33, 203–219. Seger, C. A., & Miller, E. K. (2010). Category learning in the brain. Annual Review in Neuroscience, 33, 203–219.
Zurück zum Zitat Shanahan, M., Bingman, V., Shimizu, T., Wild, M., & Güntürkün, O. (2013). The large-scale network organization of the avian forebrain: A connectivity matrix and theoretical analysis. Frontiers in Computational Neuroscience, 7, 89.PubMedPubMedCentral Shanahan, M., Bingman, V., Shimizu, T., Wild, M., & Güntürkün, O. (2013). The large-scale network organization of the avian forebrain: A connectivity matrix and theoretical analysis. Frontiers in Computational Neuroscience, 7, 89.PubMedPubMedCentral
Zurück zum Zitat Sidman, M. (1994). Equivalence relations and behavior: A research story. Boston, MA: Authors Cooperative. Sidman, M. (1994). Equivalence relations and behavior: A research story. Boston, MA: Authors Cooperative.
Zurück zum Zitat Sigala, N., & Logothetis, N. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415, 318–320.PubMed Sigala, N., & Logothetis, N. (2002). Visual categorization shapes feature selectivity in the primate temporal cortex. Nature, 415, 318–320.PubMed
Zurück zum Zitat Soto, F. A., & Wasserman, E. A. (2010). Error-driven learning in visual categorization and object recognition: A common-elements model. Psychological Review, 117, 349–381.PubMedPubMedCentral Soto, F. A., & Wasserman, E. A. (2010). Error-driven learning in visual categorization and object recognition: A common-elements model. Psychological Review, 117, 349–381.PubMedPubMedCentral
Zurück zum Zitat Stacho, M., Ströckens, F., Xiao, Q., & Güntürkün, O. (2016). Functional organization of telencephalic visual association fields in pigeons. Behavioural Brain Research, 303, 93–102.PubMed Stacho, M., Ströckens, F., Xiao, Q., & Güntürkün, O. (2016). Functional organization of telencephalic visual association fields in pigeons. Behavioural Brain Research, 303, 93–102.PubMed
Zurück zum Zitat Stansbury, D. E., Naselaris, T., & Gallant, J. L. (2013). Natural scene statistics account for the representation of scene categories in human visual cortex. Neuron, 79, 1025–1034.PubMedPubMedCentral Stansbury, D. E., Naselaris, T., & Gallant, J. L. (2013). Natural scene statistics account for the representation of scene categories in human visual cortex. Neuron, 79, 1025–1034.PubMedPubMedCentral
Zurück zum Zitat Starosta, S., Güntürkün, O., & Stüttgen, M. (2013). Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale. PLoS ONE, 8, e57407.PubMedPubMedCentral Starosta, S., Güntürkün, O., & Stüttgen, M. (2013). Stimulus-response-outcome coding in the pigeon nidopallium caudolaterale. PLoS ONE, 8, e57407.PubMedPubMedCentral
Zurück zum Zitat Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of animal discrimination learning. London, UK: Academic Press. Sutherland, N. S., & Mackintosh, N. J. (1971). Mechanisms of animal discrimination learning. London, UK: Academic Press.
Zurück zum Zitat Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.PubMed Thorpe, S., Fize, D., & Marlot, C. (1996). Speed of processing in the human visual system. Nature, 381, 520–522.PubMed
Zurück zum Zitat Troje, N. F., Huber, L., Loidolt, M., Aust, U., & Fieder, M. (1999). Categorical learning in pigeons: The role of texture and shape in complex static stimuli. Vision Research, 39, 353–366.PubMed Troje, N. F., Huber, L., Loidolt, M., Aust, U., & Fieder, M. (1999). Categorical learning in pigeons: The role of texture and shape in complex static stimuli. Vision Research, 39, 353–366.PubMed
Zurück zum Zitat Veit, L., Pidpruzhnykova, G., & Nieder, A. (2015). Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proceedings of the National Academy of Sciences of the United States of America, 112, 15208–15213.PubMedPubMedCentral Veit, L., Pidpruzhnykova, G., & Nieder, A. (2015). Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proceedings of the National Academy of Sciences of the United States of America, 112, 15208–15213.PubMedPubMedCentral
Zurück zum Zitat Verhaal, J., Kirsch, J. A., Vlachos, I., Manns, M., & Güntürkün, O. (2012). Lateralized reward-associated visual discrimination in the avian entopallium. European Journal of Neuroscience, 35, 1337–1343.PubMed Verhaal, J., Kirsch, J. A., Vlachos, I., Manns, M., & Güntürkün, O. (2012). Lateralized reward-associated visual discrimination in the avian entopallium. European Journal of Neuroscience, 35, 1337–1343.PubMed
Zurück zum Zitat Vogels, R. (1999). Categorization of complex visual images by rhesus monkeys. Part 2: Single cell study. European Journal of Neuroscience, 11, 1239–1255.PubMed Vogels, R. (1999). Categorization of complex visual images by rhesus monkeys. Part 2: Single cell study. European Journal of Neuroscience, 11, 1239–1255.PubMed
Zurück zum Zitat Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 38–43. Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 38–43.
Zurück zum Zitat Waldmann, C. M., & Güntürkün, O. (1993). The dopaminergic innervation of the pigeon caudolateral forebrain: Immunocytochemical evidence for a “prefrontal cortex” in birds? Brain Research, 600, 225–234.PubMed Waldmann, C. M., & Güntürkün, O. (1993). The dopaminergic innervation of the pigeon caudolateral forebrain: Immunocytochemical evidence for a “prefrontal cortex” in birds? Brain Research, 600, 225–234.PubMed
Zurück zum Zitat Wasserman, E. A., Brooks, D. I., & McMurray, B. (2015). Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning? Cognition, 136, 99–122.PubMed Wasserman, E. A., Brooks, D. I., & McMurray, B. (2015). Pigeons acquire multiple categories in parallel via associative learning: A parallel to human word learning? Cognition, 136, 99–122.PubMed
Zurück zum Zitat Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual behavior in pigeons: Categories, subcategories, and pseudocategories. Journal of Experimental Psychology: Animal Behavior Processes, 14, 235–246. Wasserman, E. A., Kiedinger, R. E., & Bhatt, R. S. (1988). Conceptual behavior in pigeons: Categories, subcategories, and pseudocategories. Journal of Experimental Psychology: Animal Behavior Processes, 14, 235–246.
Zurück zum Zitat Watanabe, S. (2011). Discrimination of painting style and quality: Pigeons use different strategies for different tasks. Animal Cognition, 14, 797–808.PubMed Watanabe, S. (2011). Discrimination of painting style and quality: Pigeons use different strategies for different tasks. Animal Cognition, 14, 797–808.PubMed
Zurück zum Zitat Watanabe, S., Sakamoto, J., & Wakita, M. (1995). Pigeons’ discrimination of paintings by Monet and Picasso. Journal of the Experimental Analysis of Behavior, 63, 165–174.PubMedPubMedCentral Watanabe, S., Sakamoto, J., & Wakita, M. (1995). Pigeons’ discrimination of paintings by Monet and Picasso. Journal of the Experimental Analysis of Behavior, 63, 165–174.PubMedPubMedCentral
Zurück zum Zitat Wynne, B., & Güntürkün, O. (1995). The dopaminergic innervation of the forebrain of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine. Journal of Comparative Neurology, 357, 446–464.PubMed Wynne, B., & Güntürkün, O. (1995). The dopaminergic innervation of the forebrain of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine. Journal of Comparative Neurology, 357, 446–464.PubMed
Zurück zum Zitat Yamazaki, Y., Aust, U., Huber, L., Hausmann, M., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition, 104, 315–344.PubMed Yamazaki, Y., Aust, U., Huber, L., Hausmann, M., & Güntürkün, O. (2007). Lateralized cognition: Asymmetrical and complementary strategies of pigeons during discrimination of the “human concept”. Cognition, 104, 315–344.PubMed
Metadaten
Titel
The neuroscience of perceptual categorization in pigeons: A mechanistic hypothesis
verfasst von
Onur Güntürkün
Charlotte Koenen
Fabrizio Iovine
Alexis Garland
Roland Pusch
Publikationsdatum
12.03.2018
Verlag
Springer US
Erschienen in
Learning & Behavior / Ausgabe 3/2018
Print ISSN: 1543-4494
Elektronische ISSN: 1543-4508
DOI
https://doi.org/10.3758/s13420-018-0321-6

Weitere Artikel der Ausgabe 3/2018

Learning & Behavior 3/2018 Zur Ausgabe

Premium Partner