Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2021

10.10.2020 | Original Research

The parallel waveform relaxation stochastic Runge–Kutta method for stochastic differential equations

verfasst von: Xuan Xin, Qiang Ma, Xiaohua Ding

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For large-scale non-autonomous Stratonovich stochastic differential equations, we study a very general parallel waveform relaxation process which is on the basis of stochastic Runge–Kutta (SRK) method of mean-square order 1.0 in this literature. The convergence of the whole parallel numerical iterative scheme can be guaranteed and the scheme provides better properties in terms of decreasing the load of the computation and operating speed. At the same time, the related limit method is also introduced as the continuous approximation derived from the iterative scheme. In the approximation interval, it is worth noting that the mean-square order of the parallel numerical iterative scheme can be kept consistent with the previous SRK method at any arbitrary time point, not just at discrete points. Some numerical simulations are presented to elaborate the computing efficiency of the parallel numerical iterative scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alfredo, B., Marino, Z.: The use of Runge–Kutta formulae in waveform relaxation methods. Appl. Numer. Math. 11(1–3), 95–114 (1993)MathSciNetMATH Alfredo, B., Marino, Z.: The use of Runge–Kutta formulae in waveform relaxation methods. Appl. Numer. Math. 11(1–3), 95–114 (1993)MathSciNetMATH
2.
Zurück zum Zitat Bartoszewski, Z., Jankowski, T., Kwapisz, M.: On the convergence of iterative methods for general differential-algebraic systems. J. Comput. Appl. Math. 169(2), 393–418 (2004)MathSciNetMATHCrossRef Bartoszewski, Z., Jankowski, T., Kwapisz, M.: On the convergence of iterative methods for general differential-algebraic systems. J. Comput. Appl. Math. 169(2), 393–418 (2004)MathSciNetMATHCrossRef
3.
Zurück zum Zitat Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000)MathSciNetMATHCrossRef Burrage, K., Burrage, P.M.: Order conditions of stochastic Runge–Kutta methods by B-series. SIAM J. Numer. Anal. 38(5), 1626–1646 (2000)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Cao, W.R., Zhang, Z.Q., Karniadakis, E.M.G.: Numerical methods for stochastic delay differential equations via the Wong–Zakai approximation. SIAM J. Sci. Comput. 37(1), 295–318 (2015)MathSciNetMATHCrossRef Cao, W.R., Zhang, Z.Q., Karniadakis, E.M.G.: Numerical methods for stochastic delay differential equations via the Wong–Zakai approximation. SIAM J. Sci. Comput. 37(1), 295–318 (2015)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Fan, Z.C.: Discrete-time waveform relaxation method for stochastic delay differential equations. Appl. Math. Comput. 217, 3903–3909 (2010)MathSciNetMATH Fan, Z.C.: Discrete-time waveform relaxation method for stochastic delay differential equations. Appl. Math. Comput. 217, 3903–3909 (2010)MathSciNetMATH
6.
Zurück zum Zitat Fan, Z.C.: Using waveform relaxation methods to approximate neutral stochastic functional differential equation systems. Appl. Math. Comput. 263, 151–164 (2015)MathSciNetMATH Fan, Z.C.: Using waveform relaxation methods to approximate neutral stochastic functional differential equation systems. Appl. Math. Comput. 263, 151–164 (2015)MathSciNetMATH
7.
Zurück zum Zitat Hu, L., Gan, S.Q.: Numerical analysis of the balanced implicit methods for stochastic pantograph equations with jumps. Appl. Math. Comput. 223, 281–297 (2013)MathSciNetMATH Hu, L., Gan, S.Q.: Numerical analysis of the balanced implicit methods for stochastic pantograph equations with jumps. Appl. Math. Comput. 223, 281–297 (2013)MathSciNetMATH
8.
Zurück zum Zitat Hutzenthaler, M., Jentzen, A., Wang, X.J.: Exponential integrability properties of numerical approximation process for nonlinear stochastic differential equations. Math. Comp. 87(311), 1353–1413 (2018)MathSciNetMATHCrossRef Hutzenthaler, M., Jentzen, A., Wang, X.J.: Exponential integrability properties of numerical approximation process for nonlinear stochastic differential equations. Math. Comp. 87(311), 1353–1413 (2018)MathSciNetMATHCrossRef
9.
Zurück zum Zitat Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J. Numer. Anal. 33(6), 2303–2317 (1996)MathSciNetMATHCrossRef Jackiewicz, Z., Kwapisz, M.: Convergence of waveform relaxation methods for differential-algebraic systems. SIAM J. Numer. Anal. 33(6), 2303–2317 (1996)MathSciNetMATHCrossRef
10.
Zurück zum Zitat Jackiewicz, Z., Kwapisz, M., Lo, E.: Waveform relaxation methods for functional differential systems of neutral type. J. Math. Anal. Appl. 207(1), 255–285 (1997)MathSciNetMATHCrossRef Jackiewicz, Z., Kwapisz, M., Lo, E.: Waveform relaxation methods for functional differential systems of neutral type. J. Math. Anal. Appl. 207(1), 255–285 (1997)MathSciNetMATHCrossRef
12.
Zurück zum Zitat Keller, S.H.A., Harald, N.: Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin (2007) Keller, S.H.A., Harald, N.: Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, Berlin (2007)
13.
Zurück zum Zitat Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)MATHCrossRef Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)MATHCrossRef
14.
Zurück zum Zitat Lelarasmee, E., Ruehli, A., Sangiovanni-Vincentelli, A.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans, CAD IC Syst. 1, 131–145 (1982)CrossRef Lelarasmee, E., Ruehli, A., Sangiovanni-Vincentelli, A.: The waveform relaxation method for time-domain analysis of large scale integrated circuits. IEEE Trans, CAD IC Syst. 1, 131–145 (1982)CrossRef
15.
Zurück zum Zitat Li, X.P., Cao, W.R.: On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations. Appl. Math. Comput. 261, 373–381 (2015)MathSciNetMATH Li, X.P., Cao, W.R.: On mean-square stability of two-step Maruyama methods for nonlinear neutral stochastic delay differential equations. Appl. Math. Comput. 261, 373–381 (2015)MathSciNetMATH
16.
Zurück zum Zitat Li, Y., Jiang, Y.L., Song, B.: Symplectic waveform relaxation methods for Hamiltonian systems. Appl. Math. Comput. 292, 228–239 (2017)MathSciNetMATH Li, Y., Jiang, Y.L., Song, B.: Symplectic waveform relaxation methods for Hamiltonian systems. Appl. Math. Comput. 292, 228–239 (2017)MathSciNetMATH
17.
Zurück zum Zitat Mao, X.: Stochastic Differential Equations and their Applications. Harwood, Chichester (1997)MATH Mao, X.: Stochastic Differential Equations and their Applications. Harwood, Chichester (1997)MATH
18.
Zurück zum Zitat Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publishers, Dordrecht (1995)CrossRef Milstein, G.N.: Numerical Integration of Stochastic Differential Equations. Kluwer Academic Publishers, Dordrecht (1995)CrossRef
19.
Zurück zum Zitat Nevanlinna, O.: Remarks on Picard–Lindelöf iteration Part I. BIT Numer. Math. 29(2), 328–346 (1989)MATHCrossRef Nevanlinna, O.: Remarks on Picard–Lindelöf iteration Part I. BIT Numer. Math. 29(2), 328–346 (1989)MATHCrossRef
20.
Zurück zum Zitat Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010)MathSciNetMATHCrossRef Rößler, A.: Runge–Kutta methods for the strong approximation of solutions of stochastic differential equations. SIAM J. Numer. Anal. 48(3), 922–952 (2010)MathSciNetMATHCrossRef
21.
22.
Zurück zum Zitat Wang, X.J., Wu, J.Y., Dong, B.Z.: Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. BIT Numer. Math. (2020) Wang, X.J., Wu, J.Y., Dong, B.Z.: Mean-square convergence rates of stochastic theta methods for SDEs under a coupled monotonicity condition. BIT Numer. Math. (2020)
23.
Zurück zum Zitat Wu, Q., Hu, L., Zhang, Z.J.: Convergence and stability of balanced methods for stochastic delay integro-differential equations. Appl. Math. Comput. 237, 446–460 (2014)MathSciNetMATH Wu, Q., Hu, L., Zhang, Z.J.: Convergence and stability of balanced methods for stochastic delay integro-differential equations. Appl. Math. Comput. 237, 446–460 (2014)MathSciNetMATH
Metadaten
Titel
The parallel waveform relaxation stochastic Runge–Kutta method for stochastic differential equations
verfasst von
Xuan Xin
Qiang Ma
Xiaohua Ding
Publikationsdatum
10.10.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2021
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-020-01443-3

Weitere Artikel der Ausgabe 1-2/2021

Journal of Applied Mathematics and Computing 1-2/2021 Zur Ausgabe

Premium Partner