Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2016

26.09.2016

The Passive Film Characteristics of Cold Deformed Pure Copper

verfasst von: Arash Fattah-Alhosseini, Majid Naseri, Omid Imantalab, Davood Gholami, Meysam Haghshenas

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present study, the effect of cold deformation on the electrochemical and passive behaviors of pure copper in 0.01 M NaOH solution was investigated. The dislocation density in cold deformation was calculated using a recently developed JAVA-based software, materials analysis using diffraction, based on Rietveld’s whole x-ray pattern fitting methodology. At the thickness reduction of 70%, the microhardness measured as 125.30 HV, which is 1.56 times than that in the annealed pure copper (80.25 HV). Potentiodynamic polarization plots and electrochemical impedance spectroscopy measurements showed that increasing the cold deformation offers better conditions for forming the passive films. In the Mott-Schottky analysis, no evidence for n-type behavior was obtained which indicates that the oxygen vacancies and the copper interstitials did not have any significant population density in the passive films. Also, this analysis revealed that with increasing cold deformation, the acceptor density of the passive films decreased.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H.R. Ashtiani, M.H. Parsa, and H. Bisadi, Effects of Initial Grain Size on hot Deformation Behavior of Commercial Pure Aluminum, Mater. Des., 2012, 42, p 478–485CrossRef H.R. Ashtiani, M.H. Parsa, and H. Bisadi, Effects of Initial Grain Size on hot Deformation Behavior of Commercial Pure Aluminum, Mater. Des., 2012, 42, p 478–485CrossRef
2.
Zurück zum Zitat R.B. Hmida, S. Thibaud, A. Gilbin, and F. Richard, Influence of the Initial Grain Size in Single Point Incremental Forming Process for Thin Sheets Metal and Microparts: Experimental Investigations, Mater. Des., 2013, 45, p 155–165CrossRef R.B. Hmida, S. Thibaud, A. Gilbin, and F. Richard, Influence of the Initial Grain Size in Single Point Incremental Forming Process for Thin Sheets Metal and Microparts: Experimental Investigations, Mater. Des., 2013, 45, p 155–165CrossRef
3.
Zurück zum Zitat Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy, Mater. Des., 2013, 51, p 592–597CrossRef Y. Yang, Z. Zhang, X. Li, Q. Wang, and Y. Zhang, The Effects of Grain Size on the Hot Deformation and Processing Map for 7075 Aluminum Alloy, Mater. Des., 2013, 51, p 592–597CrossRef
4.
Zurück zum Zitat L. Karthikeyan and V.S. Kumar, Relationship Between Process Parameters and Mechanical Properties of Friction Stir Processed AA6063-T6 Aluminum Alloy, Mater. Des., 2011, 32, p 3085–3091CrossRef L. Karthikeyan and V.S. Kumar, Relationship Between Process Parameters and Mechanical Properties of Friction Stir Processed AA6063-T6 Aluminum Alloy, Mater. Des., 2011, 32, p 3085–3091CrossRef
5.
Zurück zum Zitat S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, and T. Homma, Effects of Different Cooling Rates During Two Casting Processes on the Microstructures and Mechanical Properties of Extruded Mg–Al–Ca–Mn Alloy, Mater. Sci. Eng. A, 2012, 542, p 71–78CrossRef S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi, and T. Homma, Effects of Different Cooling Rates During Two Casting Processes on the Microstructures and Mechanical Properties of Extruded Mg–Al–Ca–Mn Alloy, Mater. Sci. Eng. A, 2012, 542, p 71–78CrossRef
6.
Zurück zum Zitat S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, and W. Ding, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Sand-Casting Mg–10Gd–3Y–0.5Zr Magnesium Alloy, Mater. Sci. Eng. A, 2013, 562, p 152–160CrossRef S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, and W. Ding, Effect of Cooling Rate on the Microstructure and Mechanical Properties of Sand-Casting Mg–10Gd–3Y–0.5Zr Magnesium Alloy, Mater. Sci. Eng. A, 2013, 562, p 152–160CrossRef
7.
Zurück zum Zitat R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRef R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45, p 103–189CrossRef
8.
Zurück zum Zitat N.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. Suéry, Grain Refinement in AZ91 Magnesium Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2003, 359, p 150–157CrossRef N.R. Kumar, J.J. Blandin, C. Desrayaud, F. Montheillet, and M. Suéry, Grain Refinement in AZ91 Magnesium Alloy During Thermomechanical Processing, Mater. Sci. Eng. A, 2003, 359, p 150–157CrossRef
9.
Zurück zum Zitat J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney, Grain Refinement in 7075 Aluminum by Thermomechanical Processing, Metall. Trans. A, 1981, 12, p 1267–1276CrossRef J.A. Wert, N.E. Paton, C.H. Hamilton, and M.W. Mahoney, Grain Refinement in 7075 Aluminum by Thermomechanical Processing, Metall. Trans. A, 1981, 12, p 1267–1276CrossRef
10.
Zurück zum Zitat Y.F. Shen, C.H. Qiu, L. Wang, X. Sun, X.M. Zhao, and L. Zuo, Effects of Cold Rolling on Microstructure and Mechanical Properties of Fe–30Mn–3Si–4Al–0.093C TWIP Steel, Mater. Sci. Eng. A, 2013, 561, p 329–337CrossRef Y.F. Shen, C.H. Qiu, L. Wang, X. Sun, X.M. Zhao, and L. Zuo, Effects of Cold Rolling on Microstructure and Mechanical Properties of Fe–30Mn–3Si–4Al–0.093C TWIP Steel, Mater. Sci. Eng. A, 2013, 561, p 329–337CrossRef
11.
Zurück zum Zitat R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981CrossRef R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51, p 881–981CrossRef
12.
Zurück zum Zitat A. Hassani and M. Zabihi, High Strain Rate Superplasticity in a Nano-Structured Al–Mg/SiCP Composite Severely Deformed by Equal Channel Angular Extrusion, Mater. Des., 2012, 39, p 140–150CrossRef A. Hassani and M. Zabihi, High Strain Rate Superplasticity in a Nano-Structured Al–Mg/SiCP Composite Severely Deformed by Equal Channel Angular Extrusion, Mater. Des., 2012, 39, p 140–150CrossRef
13.
Zurück zum Zitat Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583CrossRef Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel Ultra-High Straining Process for Bulk Materials Development of the Accumulative Roll-Bonding (ARB) Process, Acta Mater., 1999, 47(2), p 579–583CrossRef
14.
Zurück zum Zitat S. Kaneko, K. Fukuda, H. Utsunomiya, T. Sakai, Y. Saito, and N. Furushiro, Ultra Grain Refinement of Aluminium 1100 by ARB with Cross Rolling, Mater. Sci. Forum, 2003, 426–432, p 2649–2654CrossRef S. Kaneko, K. Fukuda, H. Utsunomiya, T. Sakai, Y. Saito, and N. Furushiro, Ultra Grain Refinement of Aluminium 1100 by ARB with Cross Rolling, Mater. Sci. Forum, 2003, 426–432, p 2649–2654CrossRef
15.
Zurück zum Zitat N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, and V.A. Sazonova, Evolution of Structure of fcc Single Crystals During Strong Plastic Deformation, Phys. Met. Metallogr., 1989, 61(6), p 127–134 N.A. Smirnova, V.I. Levit, V.I. Pilyugin, R.I. Kuznetsov, L.S. Davydova, and V.A. Sazonova, Evolution of Structure of fcc Single Crystals During Strong Plastic Deformation, Phys. Met. Metallogr., 1989, 61(6), p 127–134
16.
Zurück zum Zitat V. Varyukhin, Y. Beygelzimer, R. Kulagin, O. Prokof’eva, and A. Reshetov, Twist Extrusion: Fundamentals and Applications, Mater. Sci. Forum, 2011, 667–669, p 31–37 V. Varyukhin, Y. Beygelzimer, R. Kulagin, O. Prokof’eva, and A. Reshetov, Twist Extrusion: Fundamentals and Applications, Mater. Sci. Forum, 2011, 667–669, p 31–37
17.
Zurück zum Zitat S. Amirkhanlou, M. Askarian, M. Ketabchi, N. Azimi, N. Parvin, and F. Carreño, Gradual Formation of Nano/Ultrafine Structure Under Accumulative Press Bonding (APB) Process, Mater. Charact., 2015, 109, p 57–65CrossRef S. Amirkhanlou, M. Askarian, M. Ketabchi, N. Azimi, N. Parvin, and F. Carreño, Gradual Formation of Nano/Ultrafine Structure Under Accumulative Press Bonding (APB) Process, Mater. Charact., 2015, 109, p 57–65CrossRef
18.
Zurück zum Zitat Z.W. Wu, J. Chen, N. Piao, C. Sun, W. Hassan, X.H. Zhang, and Y.J. Xie, Electrochemical Corrosion Behavior of Bulk Ultra-Fine Grained Fe–Ni–Cr Alloy, Trans. Nonferrous Metal. Soc. China, 2014, 24, p 1989–1994CrossRef Z.W. Wu, J. Chen, N. Piao, C. Sun, W. Hassan, X.H. Zhang, and Y.J. Xie, Electrochemical Corrosion Behavior of Bulk Ultra-Fine Grained Fe–Ni–Cr Alloy, Trans. Nonferrous Metal. Soc. China, 2014, 24, p 1989–1994CrossRef
19.
Zurück zum Zitat A. Di Schino and J. Kenny, Effect of Grain Size on the Corrosion Resistance of a High Nitrogen–Low Nickel Austenitic Stainless Steel, J. Mater. Sci. Lett., 2002, 21, p 1969–1971CrossRef A. Di Schino and J. Kenny, Effect of Grain Size on the Corrosion Resistance of a High Nitrogen–Low Nickel Austenitic Stainless Steel, J. Mater. Sci. Lett., 2002, 21, p 1969–1971CrossRef
20.
Zurück zum Zitat S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas, and R.I. Sundaresan, Comparison of Rolled and Heat Treated SS304 in Chloride Solution Using Electrochemical and XPS Techniques, Corros. Sci., 2003, 45, p 2467–2483CrossRef S.V. Phadnis, A.K. Satpati, K.P. Muthe, J.C. Vyas, and R.I. Sundaresan, Comparison of Rolled and Heat Treated SS304 in Chloride Solution Using Electrochemical and XPS Techniques, Corros. Sci., 2003, 45, p 2467–2483CrossRef
21.
Zurück zum Zitat D. Nakhaie and M.H. Moayed, Pitting Corrosion of Cold Rolled Solution Treated 17-4PH Stainless Steel, Corros. Sci., 2014, 80, p 290–298CrossRef D. Nakhaie and M.H. Moayed, Pitting Corrosion of Cold Rolled Solution Treated 17-4PH Stainless Steel, Corros. Sci., 2014, 80, p 290–298CrossRef
22.
Zurück zum Zitat A. Fattah-Alhosseini and S. Vafaeian, Comparison of Electrochemical Behavior Between Coarse Grained and Fine-Grained AISI, 430 Ferritic Stainless Steel by Mott–Schottky Analysis and EIS Measurements, J. Alloy. Compd., 2015, 639, p 301–307CrossRef A. Fattah-Alhosseini and S. Vafaeian, Comparison of Electrochemical Behavior Between Coarse Grained and Fine-Grained AISI, 430 Ferritic Stainless Steel by Mott–Schottky Analysis and EIS Measurements, J. Alloy. Compd., 2015, 639, p 301–307CrossRef
23.
Zurück zum Zitat A. Fattah-Alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921–928CrossRef A. Fattah-Alhosseini and S. Vafaeian, Influence of Grain Refinement on the Electrochemical Behavior of AISI, 430 Ferritic Stainless Steel in an Alkaline Solution, Appl. Surf. Sci., 2016, 360, p 921–928CrossRef
24.
Zurück zum Zitat K. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66, p 75005–75013CrossRef K. Ralston and N. Birbilis, Effect of Grain Size on Corrosion: A Review, Corrosion, 2010, 66, p 75005–75013CrossRef
25.
Zurück zum Zitat L. Liu, Y. Li, and F. Wang, Electrochemical Corrosion Behavior of Nanocrystalline Materials—A Review, J. Mater. Sci. Technol., 2010, 26, p 1–14CrossRef L. Liu, Y. Li, and F. Wang, Electrochemical Corrosion Behavior of Nanocrystalline Materials—A Review, J. Mater. Sci. Technol., 2010, 26, p 1–14CrossRef
26.
Zurück zum Zitat A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh, The Semiconducting Properties of Passive Films Formed on AISI, 316 L and AISI, 321 Stainless Steels: A Test of the Point Defect Model (PDM), Corros. Sci., 2011, 53, p 3186–3192CrossRef A. Fattah-alhosseini, F. Soltani, F. Shirsalimi, B. Ezadi, and N. Attarzadeh, The Semiconducting Properties of Passive Films Formed on AISI, 316 L and AISI, 321 Stainless Steels: A Test of the Point Defect Model (PDM), Corros. Sci., 2011, 53, p 3186–3192CrossRef
27.
Zurück zum Zitat A. Fattah-Alhosseini and S.O. Gashti, Passive Behavior of Ultra-Fine-Grained 1050 Aluminum Alloy Produced by Accumulative Roll Bonding in a Borate Buffer Solution, Acta Metall. Sin. (Engl. Lett.), 2015, 28, p 1222–1229CrossRef A. Fattah-Alhosseini and S.O. Gashti, Passive Behavior of Ultra-Fine-Grained 1050 Aluminum Alloy Produced by Accumulative Roll Bonding in a Borate Buffer Solution, Acta Metall. Sin. (Engl. Lett.), 2015, 28, p 1222–1229CrossRef
28.
Zurück zum Zitat A. Fattah-alhosseini and S.O. Gashti, Corrosion Behavior of Ultra-Fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution, J. Mater. Eng. Perform., 2015, 24, p 3386–3393CrossRef A. Fattah-alhosseini and S.O. Gashti, Corrosion Behavior of Ultra-Fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution, J. Mater. Eng. Perform., 2015, 24, p 3386–3393CrossRef
29.
Zurück zum Zitat A. Fattah-alhosseini and O. Imantalab, Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47, p 572–580CrossRef A. Fattah-alhosseini and O. Imantalab, Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process, Metall. Mater. Trans. A, 2016, 47, p 572–580CrossRef
30.
Zurück zum Zitat O. Imantalab and A. Fattah-alhosseini, Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process, J. Mater. Eng. Perform., 2015, 24, p 2579–2585CrossRef O. Imantalab and A. Fattah-alhosseini, Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process, J. Mater. Eng. Perform., 2015, 24, p 2579–2585CrossRef
31.
Zurück zum Zitat A. Fattah-alhosseini and O. Imantalab, Effect of Accumulative Roll Bonding Process on the Electrochemical Behavior of Pure Copper, J. Alloy. Compd., 2015, 632, p 48–52CrossRef A. Fattah-alhosseini and O. Imantalab, Effect of Accumulative Roll Bonding Process on the Electrochemical Behavior of Pure Copper, J. Alloy. Compd., 2015, 632, p 48–52CrossRef
32.
Zurück zum Zitat P. Sahu, M. De, and S. Kajiwara, Microstructural Characterization of Fe–Mn–C Martensites Athermally Transformed at Low Temperature by Rietveld Method, Mater. Sci. Eng. A, 2002, 333, p 10–23CrossRef P. Sahu, M. De, and S. Kajiwara, Microstructural Characterization of Fe–Mn–C Martensites Athermally Transformed at Low Temperature by Rietveld Method, Mater. Sci. Eng. A, 2002, 333, p 10–23CrossRef
33.
Zurück zum Zitat P. Sahu, M. De, and S. Kajiwara, Microstructural Characterization of Stress-Induced Martensites Evolved at Low Temperature in Deformed Powders of Fe–Mn–C Alloys by the Rietveld Method, J. Alloy. Compd., 2002, 346, p 158–169CrossRef P. Sahu, M. De, and S. Kajiwara, Microstructural Characterization of Stress-Induced Martensites Evolved at Low Temperature in Deformed Powders of Fe–Mn–C Alloys by the Rietveld Method, J. Alloy. Compd., 2002, 346, p 158–169CrossRef
34.
Zurück zum Zitat M. Naseri, A. Hassani, and M. Tajally, Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation, Ceram. Int., 2015, 41, p 3952–3960CrossRef M. Naseri, A. Hassani, and M. Tajally, Fabrication and Characterization of Hybrid Composite Strips with Homogeneously Dispersed Ceramic Particles by Severe Plastic Deformation, Ceram. Int., 2015, 41, p 3952–3960CrossRef
35.
Zurück zum Zitat M. Naseri, A. Hassani, and M. Tajally, An Alternative Method for Manufacturing Al/B4C/SiC Hybrid Composite Strips by Cross Accumulative Roll Bonding (CARB) Process, Ceram. Int., 2015, 41, p 13461–13469CrossRef M. Naseri, A. Hassani, and M. Tajally, An Alternative Method for Manufacturing Al/B4C/SiC Hybrid Composite Strips by Cross Accumulative Roll Bonding (CARB) Process, Ceram. Int., 2015, 41, p 13461–13469CrossRef
36.
Zurück zum Zitat R. Jamaati, M. Naseri, and M.R. Toroghinejad, Wear Behavior of Nanostructured Al/Al2O3 Composite Fabricated Via Accumulative Roll Bonding (ARB) Process, Mater. Des., 2014, 59, p 540–549CrossRef R. Jamaati, M. Naseri, and M.R. Toroghinejad, Wear Behavior of Nanostructured Al/Al2O3 Composite Fabricated Via Accumulative Roll Bonding (ARB) Process, Mater. Des., 2014, 59, p 540–549CrossRef
37.
Zurück zum Zitat M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy Via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12–20CrossRef M. Naseri, M. Reihanian, and E. Borhani, A New Strategy to Simultaneous Increase in the Strength and Ductility of AA2024 Alloy Via Accumulative Roll Bonding (ARB), Mater. Sci. Eng. A, 2016, 656, p 12–20CrossRef
38.
Zurück zum Zitat R. Jamaati, M.R. Toroghinejad, and H. Edris, Effect of Stacking Fault Energy on Nanostructure Formation Under Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2013, 578, p 191–196CrossRef R. Jamaati, M.R. Toroghinejad, and H. Edris, Effect of Stacking Fault Energy on Nanostructure Formation Under Accumulative Roll Bonding (ARB) Process, Mater. Sci. Eng. A, 2013, 578, p 191–196CrossRef
39.
Zurück zum Zitat A. Kauffmann, J. Freudenberger, D. Geissler, S. Yin, W. Schillinger, V. Subramanya Sarma, H. Bahmanpour, R. Scattergood, M.S. Khoshkhoo, H. Wendrock, C.C. Koch, J. Eckert, and L. Schultz, Severe Deformation Twinning in Pure Copper by Cryogenic Wire Drawing, Acta Mater., 2011, 59, p 7816–7823CrossRef A. Kauffmann, J. Freudenberger, D. Geissler, S. Yin, W. Schillinger, V. Subramanya Sarma, H. Bahmanpour, R. Scattergood, M.S. Khoshkhoo, H. Wendrock, C.C. Koch, J. Eckert, and L. Schultz, Severe Deformation Twinning in Pure Copper by Cryogenic Wire Drawing, Acta Mater., 2011, 59, p 7816–7823CrossRef
40.
Zurück zum Zitat H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski, Electrochemical and Cellular Behavior of Ultrafine-Grained Titanium In Vitro, Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 39, p 299–304CrossRef H. Maleki-Ghaleh, K. Hajizadeh, A. Hadjizadeh, M.S. Shakeri, S. Ghobadi Alamdari, S. Masoudfar, E. Aghaie, M. Javidi, J. Zdunek, and K.J. Kurzydlowski, Electrochemical and Cellular Behavior of Ultrafine-Grained Titanium In Vitro, Mater. Sci. Eng. C. Mater. Biol. Appl., 2014, 39, p 299–304CrossRef
41.
Zurück zum Zitat A. Fattah-alhosseini and S. Vafaeian, Passivation Behavior of a Ferritic Stainless Steel in Concentrated Alkaline Solutions, J. Mater. Res. Technol., 2015, 4, p 423–428CrossRef A. Fattah-alhosseini and S. Vafaeian, Passivation Behavior of a Ferritic Stainless Steel in Concentrated Alkaline Solutions, J. Mater. Res. Technol., 2015, 4, p 423–428CrossRef
42.
Zurück zum Zitat L. Jinlong and L. Hongyun, Effect of Temperature and Chloride Ion Concentration on Corrosion of Passive Films on Nano/Ultrafine Grained Stainless Steels, J. Mater. Eng. Perform., 2014, 23, p 4223–4229CrossRef L. Jinlong and L. Hongyun, Effect of Temperature and Chloride Ion Concentration on Corrosion of Passive Films on Nano/Ultrafine Grained Stainless Steels, J. Mater. Eng. Perform., 2014, 23, p 4223–4229CrossRef
43.
Zurück zum Zitat H. Luo, S. Gao, C. Dong, and X. Li, Characterization of Electrochemical and Passive Behaviour of Alloy 59 in Acid Solution, Electrochim. Acta, 2014, 135, p 412–419CrossRef H. Luo, S. Gao, C. Dong, and X. Li, Characterization of Electrochemical and Passive Behaviour of Alloy 59 in Acid Solution, Electrochim. Acta, 2014, 135, p 412–419CrossRef
44.
Zurück zum Zitat L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108CrossRef L. Hamadou, L. Aïnouche, A. Kadri, S.A.A. Yahia, and N. Benbrahim, Electrochemical Impedance Spectroscopy Study of Thermally Grown Oxides Exhibiting Constant Phase Element Behaviour, Electrochim. Acta, 2013, 113, p 99–108CrossRef
45.
Zurück zum Zitat H. Wu, Y. Wang, Q. Zhong, M. Sheng, H. Du, and Z. Li, The Semi-conductor Property and Corrosion Resistance of Passive Film on Electroplated Ni and Cu–Ni Alloys, J. Electroanal. Chem., 2011, 663, p 59–66CrossRef H. Wu, Y. Wang, Q. Zhong, M. Sheng, H. Du, and Z. Li, The Semi-conductor Property and Corrosion Resistance of Passive Film on Electroplated Ni and Cu–Ni Alloys, J. Electroanal. Chem., 2011, 663, p 59–66CrossRef
46.
Zurück zum Zitat B. Zhang, Y. Li, and F. Wang, Electrochemical Corrosion Behaviour of Microcrystalline Aluminium in Acidic Solutions, Corros. Sci., 2007, 49, p 2071–2082CrossRef B. Zhang, Y. Li, and F. Wang, Electrochemical Corrosion Behaviour of Microcrystalline Aluminium in Acidic Solutions, Corros. Sci., 2007, 49, p 2071–2082CrossRef
47.
Zurück zum Zitat Q.J. Wang, M.S. Zheng, and J.W. Zhu, Semi-conductive Properties of Passive Films Formed on Copper in Chromate Solutions, Thin Solid Films, 2009, 517, p 1995–1999CrossRef Q.J. Wang, M.S. Zheng, and J.W. Zhu, Semi-conductive Properties of Passive Films Formed on Copper in Chromate Solutions, Thin Solid Films, 2009, 517, p 1995–1999CrossRef
48.
Zurück zum Zitat C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of Temperature on passive Film Formation of UNS N08031 Cr–Ni Alloy in Phosphoric Acid Contaminated with Different Aggressive Anions, Electrochim. Acta, 2013, 111, p 552–561CrossRef C. Escrivà-Cerdán, E. Blasco-Tamarit, D.M. García-García, J. García-Antón, R. Akid, and J. Walton, Effect of Temperature on passive Film Formation of UNS N08031 Cr–Ni Alloy in Phosphoric Acid Contaminated with Different Aggressive Anions, Electrochim. Acta, 2013, 111, p 552–561CrossRef
Metadaten
Titel
The Passive Film Characteristics of Cold Deformed Pure Copper
verfasst von
Arash Fattah-Alhosseini
Majid Naseri
Omid Imantalab
Davood Gholami
Meysam Haghshenas
Publikationsdatum
26.09.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2352-5

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Engineering and Performance 11/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.