Skip to main content
Erschienen in: Cognitive Neurodynamics 4/2012

01.08.2012 | Research Article

The phase response of the cortical slow oscillation

verfasst von: Arne Weigenand, Thomas Martinetz, Jens Christian Claussen

Erschienen in: Cognitive Neurodynamics | Ausgabe 4/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cortical slow oscillations occur in the mammalian brain during deep sleep and have been shown to contribute to memory consolidation, an effect that can be enhanced by electrical stimulation. As the precise underlying working mechanisms are not known it is desired to develop and analyze computational models of slow oscillations and to study the response to electrical stimuli. In this paper we employ the conductance based model of Compte et al. (J Neurophysiol 89:2707–2725, 2003) to study the effect of electrical stimulation. The population response to electrical stimulation depends on the timing of the stimulus with respect to the state of the slow oscillation. First, we reproduce the experimental results of electrical stimulation in ferret brain slices by Shu et al. (Nature 423:288–293, 2003) from the conductance based model. We then numerically obtain the phase response curve for the conductance based network model to quantify the network’s response to weak stimuli. Our results agree with experiments in vivo and in vitro that show that sensitivity to stimulation is weaker in the up than in the down state. However, we also find that within the up state stimulation leads to a shortening of the up state, or phase advance, whereas during the up–down transition a prolongation of up states is possible, resulting in a phase delay. Finally, we compute the phase response curve for the simple mean-field model by Ngo et al. (EPL Europhys Lett 89:68002, 2010) and find that the qualitative shape of the PRC is preserved, despite its different mechanism for the generation of slow oscillations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Achuthan S, Butera RJ, Canavier CC (2010) Synaptic and intrinsic determinants of the phase resetting curve for weak coupling. J Comput Neurosci 30(2):373–390PubMedCrossRef Achuthan S, Butera RJ, Canavier CC (2010) Synaptic and intrinsic determinants of the phase resetting curve for weak coupling. J Comput Neurosci 30(2):373–390PubMedCrossRef
Zurück zum Zitat Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann DM (2012) Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling. Nat Neurosci 15(5):763–768PubMedCrossRef Akam T, Oren I, Mantoan L, Ferenczi E, Kullmann DM (2012) Oscillatory dynamics in the hippocampus support dentate gyrus-CA3 coupling. Nat Neurosci 15(5):763–768PubMedCrossRef
Zurück zum Zitat Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107(2):69–83PubMedCrossRef Amzica F, Steriade M (1998) Electrophysiological correlates of sleep delta waves. Electroencephalogr Clin Neurophysiol 107(2):69–83PubMedCrossRef
Zurück zum Zitat Biktasheva IV, Barkley D, Biktashev VN, Foulkes AJ (2010) Computation of the drift velocity of spiral waves using response functions. Phys Rev E 81(6):066202CrossRef Biktasheva IV, Barkley D, Biktashev VN, Foulkes AJ (2010) Computation of the drift velocity of spiral waves using response functions. Phys Rev E 81(6):066202CrossRef
Zurück zum Zitat Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208PubMedCrossRef Brunel N (2000) Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J Comput Neurosci 8(3):183–208PubMedCrossRef
Zurück zum Zitat Clemens Z, Mölle M, Erőss L, Barsi P, Halász P, Born J (2007) Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130:2868–2878PubMedCrossRef Clemens Z, Mölle M, Erőss L, Barsi P, Halász P, Born J (2007) Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans. Brain 130:2868–2878PubMedCrossRef
Zurück zum Zitat Compte A, Sanchez-Vives MV, McCormick DA, Wang X (2003) Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725PubMedCrossRef Compte A, Sanchez-Vives MV, McCormick DA, Wang X (2003) Cellular and network mechanisms of slow oscillatory activity (<1 hz) and wave propagations in a cortical network model. J Neurophysiol 89(5):2707–2725PubMedCrossRef
Zurück zum Zitat Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15(1):604PubMed Contreras D, Steriade M (1995) Cellular basis of EEG slow rhythms: a study of dynamic corticothalamic relationships. J Neurosci 15(1):604PubMed
Zurück zum Zitat Deco G, Mart D, Ledberg A, Reig R, Sanchez Vives MV (2009) Effective reduced Diffusion-Models: a data driven approach to the analysis of neuronal dynamics. PLoS Comput Biol 5(12):e1000587PubMedCrossRef Deco G, Mart D, Ledberg A, Reig R, Sanchez Vives MV (2009) Effective reduced Diffusion-Models: a data driven approach to the analysis of neuronal dynamics. PLoS Comput Biol 5(12):e1000587PubMedCrossRef
Zurück zum Zitat Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126PubMed Diekelmann S, Born J (2010) The memory function of sleep. Nat Rev Neurosci 11(2):114–126PubMed
Zurück zum Zitat Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems. SIAM, PhiladelphiaCrossRef Ermentrout B (2002) Simulating, analyzing, and animating dynamical systems. SIAM, PhiladelphiaCrossRef
Zurück zum Zitat Ermentrout B, Terman D (2010) Mathematical foundations of neuroscience. Springer, BerlinCrossRef Ermentrout B, Terman D (2010) Mathematical foundations of neuroscience. Springer, BerlinCrossRef
Zurück zum Zitat Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143PubMedCrossRef Fröhlich F, McCormick DA (2010) Endogenous electric fields may guide neocortical network activity. Neuron 67(1):129–143PubMedCrossRef
Zurück zum Zitat Granada A, Hennig R, Ronacher B, Kramer A, Herzel H (2009) Phase response curves: elucidating the dynamics of coupled oscillators. In: Michael L. Johnson and Ludwig Brand (eds) Methods in enzymology, vol 454. Elsevier, pp 1–27 Granada A, Hennig R, Ronacher B, Kramer A, Herzel H (2009) Phase response curves: elucidating the dynamics of coupled oscillators. In: Michael L. Johnson and Ludwig Brand (eds) Methods in enzymology, vol 454. Elsevier, pp 1–27
Zurück zum Zitat Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5(4):550–569CrossRef Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5(4):550–569CrossRef
Zurück zum Zitat Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337PubMedCrossRef Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338(6213):334–337PubMedCrossRef
Zurück zum Zitat Hájos N, Palhalmi J, Mann EO, Németh B, Paulsen O, Freund TF (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24(41):9127–9137PubMedCrossRef Hájos N, Palhalmi J, Mann EO, Németh B, Paulsen O, Freund TF (2004) Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro. J Neurosci 24(41):9127–9137PubMedCrossRef
Zurück zum Zitat Izhikevich EM (2000) Phase equations for relaxation oscillators. SIAM J Appl Math 60(5):1789–1804CrossRef Izhikevich EM (2000) Phase equations for relaxation oscillators. SIAM J Appl Math 60(5):1789–1804CrossRef
Zurück zum Zitat Jirsa V (2008) Dispersion and time delay effects in synchronized spike-burst networks. Cogn Neurodyn 2(1):29–38PubMedCrossRef Jirsa V (2008) Dispersion and time delay effects in synchronized spike-burst networks. Cogn Neurodyn 2(1):29–38PubMedCrossRef
Zurück zum Zitat Ko TW, Ermentrout GB (2009) Phase-response curves of coupled oscillators. Phys Rev E 79:016–211CrossRef Ko TW, Ermentrout GB (2009) Phase-response curves of coupled oscillators. Phys Rev E 79:016–211CrossRef
Zurück zum Zitat Kori H, Kawamura Y, Nakao H, Arai K, Kuramoto Y (2009) Collective-phase description of coupled oscillators with general network structure. Phys Rev E 80:036207CrossRef Kori H, Kawamura Y, Nakao H, Arai K, Kuramoto Y (2009) Collective-phase description of coupled oscillators with general network structure. Phys Rev E 80:036207CrossRef
Zurück zum Zitat Kuramoto Y (2003) Chemical oscillations, waves, and turbulence. Chemistry series, Dover Publications (originally published: Springer Berlin, 1984) Kuramoto Y (2003) Chemical oscillations, waves, and turbulence. Chemistry series, Dover Publications (originally published: Springer Berlin, 1984)
Zurück zum Zitat Levnajić Z, Pikovsky A (2010) Phase resetting of collective rhythm in ensembles of oscillators. Phys Rev E 82:056202CrossRef Levnajić Z, Pikovsky A (2010) Phase resetting of collective rhythm in ensembles of oscillators. Phys Rev E 82:056202CrossRef
Zurück zum Zitat MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48(5):811–823PubMedCrossRef MacLean JN, Watson BO, Aaron GB, Yuste R (2005) Internal dynamics determine the cortical response to thalamic stimulation. Neuron 48(5):811–823PubMedCrossRef
Zurück zum Zitat Marshall L, Mölle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992PubMedCrossRef Marshall L, Mölle M, Hallschmid M, Born J (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992PubMedCrossRef
Zurück zum Zitat Marshall L, Helgadottir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613PubMedCrossRef Marshall L, Helgadottir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613PubMedCrossRef
Zurück zum Zitat Massimini M (2002) EEG slow (1 hz) waves are associated with nonstationarity of Thalamo–Cortical sensory processing in the sleeping human. J Neurophysiol 89:1205–1213CrossRef Massimini M (2002) EEG slow (1 hz) waves are associated with nonstationarity of Thalamo–Cortical sensory processing in the sleeping human. J Neurophysiol 89:1205–1213CrossRef
Zurück zum Zitat Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24(31):6862PubMedCrossRef Massimini M, Huber R, Ferrarelli F, Hill S, Tononi G (2004) The sleep slow oscillation as a traveling wave. J Neurosci 24(31):6862PubMedCrossRef
Zurück zum Zitat Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, Peterson MJ, Tononi G (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA 104(20):8496–8501PubMedCrossRef Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, Peterson MJ, Tononi G (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA 104(20):8496–8501PubMedCrossRef
Zurück zum Zitat Mattia M, Sanchez-Vives M (2012) Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cogn Neurodyn 6(3):239–250 Mattia M, Sanchez-Vives M (2012) Exploring the spectrum of dynamical regimes and timescales in spontaneous cortical activity. Cogn Neurodyn 6(3):239–250
Zurück zum Zitat Mayer J, Schuster HG, Claussen JC, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99(6):068102PubMedCrossRef Mayer J, Schuster HG, Claussen JC, Mölle M (2007) Corticothalamic projections control synchronization in locally coupled bistable thalamic oscillators. Phys Rev Lett 99(6):068102PubMedCrossRef
Zurück zum Zitat Mejias JF, Kappen HJ, Torres JJ (2010) Irregular dynamics in up and down cortical states. PLoS One 5(11):e13651PubMedCrossRef Mejias JF, Kappen HJ, Torres JJ (2010) Irregular dynamics in up and down cortical states. PLoS One 5(11):e13651PubMedCrossRef
Zurück zum Zitat Mölle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 22(24):10941–10947PubMed Mölle M, Marshall L, Gais S, Born J (2002) Grouping of spindle activity during slow oscillations in human non-rapid eye movement sleep. J Neurosci 22(24):10941–10947PubMed
Zurück zum Zitat Ngo HV, Köhler J, Mayer J, Claussen JC, Schuster HG (2010) Triggering up states in all-to-all coupled neurons. EPL Europhys Lett 89(6):68002CrossRef Ngo HV, Köhler J, Mayer J, Claussen JC, Schuster HG (2010) Triggering up states in all-to-all coupled neurons. EPL Europhys Lett 89(6):68002CrossRef
Zurück zum Zitat Perez Velazquez JL, Galán RF, Dominguez LG, Leshchenko Y, Lo S, Belkas J, Erra RG (2007) Phase response curves in the characterization of epileptiform activity. Phys Rev E 76:061912CrossRef Perez Velazquez JL, Galán RF, Dominguez LG, Leshchenko Y, Lo S, Belkas J, Erra RG (2007) Phase response curves in the characterization of epileptiform activity. Phys Rev E 76:061912CrossRef
Zurück zum Zitat Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer ii/iii barrel cortex. Proc Natl Acad Sci USA 100(23):13638 Petersen CC, Hahn TT, Mehta M, Grinvald A, Sakmann B (2003) Interaction of sensory responses with spontaneous depolarization in layer ii/iii barrel cortex. Proc Natl Acad Sci USA 100(23):13638
Zurück zum Zitat Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12(7):919–926PubMedCrossRef Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP (2009) Replay of rule-learning related neural patterns in the prefrontal cortex during sleep. Nat Neurosci 12(7):919–926PubMedCrossRef
Zurück zum Zitat Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3(10):1027–1034PubMedCrossRef Sanchez-Vives MV, McCormick DA (2000) Cellular and network mechanisms of rhythmic recurrent activity in neocortex. Nat Neurosci 3(10):1027–1034PubMedCrossRef
Zurück zum Zitat Sanchez-Vives MV, Descalzo VF, Reig R, Figueroa NA, Compte A, Gallego R (2008) Rhythmic spontaneous activity in the piriform cortex. Cereb Cortex 18(5):1179PubMedCrossRef Sanchez-Vives MV, Descalzo VF, Reig R, Figueroa NA, Compte A, Gallego R (2008) Rhythmic spontaneous activity in the piriform cortex. Cereb Cortex 18(5):1179PubMedCrossRef
Zurück zum Zitat Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R (2010) Inhibitory modulation of cortical up states. J Neurophysiol 104(3):1314–1324PubMedCrossRef Sanchez-Vives MV, Mattia M, Compte A, Perez-Zabalza M, Winograd M, Descalzo VF, Reig R (2010) Inhibitory modulation of cortical up states. J Neurophysiol 104(3):1314–1324PubMedCrossRef
Zurück zum Zitat Seamari Y, Narvez JA, Vico FJ, Lobo D, Sanchez-Vives MV (2007) Robust off- and online separation of intracellularly recorded up and down cortical states. PLoS One 2(9):e888PubMedCrossRef Seamari Y, Narvez JA, Vico FJ, Lobo D, Sanchez-Vives MV (2007) Robust off- and online separation of intracellularly recorded up and down cortical states. PLoS One 2(9):e888PubMedCrossRef
Zurück zum Zitat Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423(6937):288–293PubMedCrossRef Shu Y, Hasenstaub A, McCormick DA (2003) Turning on and off recurrent balanced cortical activity. Nature 423(6937):288–293PubMedCrossRef
Zurück zum Zitat Somers D, Kopell N (1995) Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D 89(1–2):169–183CrossRef Somers D, Kopell N (1995) Waves and synchrony in networks of oscillators of relaxation and non-relaxation type. Physica D 89(1–2):169–183CrossRef
Zurück zum Zitat Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin
Zurück zum Zitat Tsubo Y, Takada M, Reyes AD, Fukai T (2007) Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci 25(11):3429–3441PubMedCrossRef Tsubo Y, Takada M, Reyes AD, Fukai T (2007) Layer and frequency dependencies of phase response properties of pyramidal neurons in rat motor cortex. Eur J Neurosci 25(11):3429–3441PubMedCrossRef
Zurück zum Zitat Várkonyi PL, Holmes P (2008) On synchronization and traveling waves in chains of relaxation oscillators with an application to lamprey cpg. SIAM J Appl Dyn Syst 7:766–794CrossRef Várkonyi PL, Holmes P (2008) On synchronization and traveling waves in chains of relaxation oscillators with an application to lamprey cpg. SIAM J Appl Dyn Syst 7:766–794CrossRef
Zurück zum Zitat Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, Berlin Winfree AT (2001) The geometry of biological time, 2nd edn. Springer, Berlin
Metadaten
Titel
The phase response of the cortical slow oscillation
verfasst von
Arne Weigenand
Thomas Martinetz
Jens Christian Claussen
Publikationsdatum
01.08.2012
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 4/2012
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-012-9207-z

Weitere Artikel der Ausgabe 4/2012

Cognitive Neurodynamics 4/2012 Zur Ausgabe

Neuer Inhalt