Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2018

Open Access 01.12.2018 | Research

The refinement and generalization of Hardy’s inequality in Sobolev space

verfasst von: Xiaomin Xue, Fushan Li

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2018

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we refine the proof of Hardy’s inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952) and extend Hardy’s inequality from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{\sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n\geq 3\) to \(n\geq 2\). Hardy’s inequality in (Evans in Partial Differential Equations, 2010, Hardy in Inequalities, 1952) is the special case of our results.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

1 Introduction

It is well known that inequalities are important tools in classical analysis [26, 13, 14, 2629, 3139, 4143, 45]. One application of inequalities is to study the properties of partial differential equations. Li and his coauthors [1523] studied the global existence and uniqueness, limit behavior, uniform stability, and blow-up of solutions for partial differential equations by using various inequalities. Liu [11, 24, 25] showed the stability and convergence results of evolution equations and Du [8, 9] studied obstacle problems by using various inequalities.
In recent decades, there have been many results on the extension and refinement of inequality [7, 10, 12, 30, 40, 44]. Qin [30] summarized a large number of inequalities and applications, but Hardy’s inequality was not included. The authors [7, 40] generalized the summation form Hardy inequality, Zhang [44] extended Hardy inequalities using Littlewood–Paley theory and nonlinear estimates method in Besov spaces, and the results improved and extended the well-known results in [1].
The first edition of classic textbook [10] does not contain Hardy’s inequality, we see that the very significant Hardy’s inequality
$$ \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx $$
holds if \(u\in H^{1}(B(o,r))\), \(n\geq 3\), and \(r>0\) in the second edition of [10]. The proof of Hardy’s inequality given in [10, 12] is very ingenious, but it is not easy to master for the reader. Therefore, we refine the proof of Hardy’s inequality for readers to grasp the essence of the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{ \sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n \geq 3\) to \(n \geq 2\). Hardy’s inequality in [10, 12] is the special case of our results.
Let \(B(o,r)\) be a closed ball in \(\mathbf{R}^{n}\) with center o and radius \(r>0\), \(x=(x_{1},x_{2},\ldots , x_{n})\) be a vector in \(B(o,r)\), \(\nu =(\nu _{1},\nu _{2},\ldots ,\nu _{n})= (\frac{x_{1}}{r},\frac{x _{2}}{r},\ldots ,\frac{x_{n}}{r} )\) be the unit outward normal to \(\partial B(o,r)\). \(W^{k,p}(\varOmega )\) and \(H^{1}(\varOmega )\) denote the Sobolev spaces. We write
$$\begin{aligned} Du=(u_{x_{1}},u_{x_{2}},\ldots , u_{x_{n}}), \quad \vert x \vert = \bigl(x_{1}^{2}+x_{2}^{2}+ \cdots +x_{n}^{2} \bigr)^{\frac{1}{2}}. \end{aligned}$$
In Sect. 2, we first recall Hardy’s inequality, refine the proof for completeness, and state our main results. The proofs of the main results are given in Sect. 3.

2 Main results

Now, we present the global approximation theorem and Hardy’s inequality in Sobolev space.
Lemma 2.1
([10], Global approximation theorem)
Assume that Ω is bounded and ∂Ω is \(C^{1}\). Let \(u\in W^{k,p}(\varOmega )\) for some \(1\leq p<\infty \). Then there exist functions \(u_{m}\in C^{\infty }(\overline{\varOmega })\) such that
$$\begin{aligned} u_{m}\rightarrow u \quad \mathit{in } W^{k,p}(\varOmega ). \end{aligned}$$
Lemma 2.2
([10, 12], Hardy’s inequality)
Assume \(n\geq 3\) and \(r>0\). Let \(u\in H^{1}(B(o,r))\). Then \(\frac{u}{|x|} \in L^{2}(B(o,r))\) with the estimate
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx. \end{aligned}$$
(2.1)
For readers to grasp the essence of the proof, we give the refined proof below.
Proof
By the global approximation theorem Lemma 2.1, we may assume \(u\in C^{\infty }(B(o,r))\). Noting that \(D (\frac{1}{|x|^{ \rho }} )=-\rho \frac{x}{|x|^{\rho +2}}\) for any \(\rho >0\) and integrating by parts, we have
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx &= -\frac{1}{\rho } \int _{B(o,r)}u ^{2}D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr) \cdot \frac{x}{ \vert x \vert ^{2-\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{B(o,r)}u^{2}\sum_{i=1}^{n} \biggl(\frac{1}{ \vert x \vert ^{ \rho }} \biggr)_{x_{i}} \frac{x_{i}}{ \vert x \vert ^{2-\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{\partial B(o,r)}\sum_{i=1}^{n}u^{2} \nu _{i} \cdot \frac{x_{i}}{ \vert x \vert ^{2}}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \frac{1}{ \vert x \vert ^{\rho }} \biggl(u^{2}\frac{x_{i}}{ \vert x \vert ^{2-\rho }} \biggr)_{x_{i}} \,dx \\ &= -\frac{1}{\rho r} \int _{\partial B(o,r)}u^{2}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)} \biggl[2uDu\cdot \frac{x}{ \vert x \vert ^{2}}+(n+ \rho -2) \frac{u^{2}}{ \vert x \vert ^{2}} \biggr]\,dx. \end{aligned}$$
(2.2)
Therefore
$$\begin{aligned} (n-2) \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx =-2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2}}\,dx+\frac{1}{r} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.3)
For any \(\varepsilon >0\), using the Cauchy inequality and Schwarz inequality, we obtain
$$\begin{aligned} -2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2}}\,dx &= -2 \int _{B(o,r)} \frac{u}{ \vert x \vert }Du\cdot \frac{x}{ \vert x \vert }\,dx \\ &\leq 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert } \vert Du \vert \biggl\vert \frac{x}{ \vert x \vert } \biggr\vert \,dx \\ &= 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert } \vert Du \vert \,dx \\ &\leq 2 \varepsilon \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx+\frac{1}{2 \varepsilon } \int _{B(o,r)} \vert Du \vert ^{2}\,dx. \end{aligned}$$
Fixing \(\varepsilon >0\) such that \(n-2-2\varepsilon >0\), we conclude
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2}}\,dx \leq C \int _{B(o,r)} \vert Du \vert ^{2}\,dx+ \frac{C}{r} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.4)
According to the divergence theorem, we have
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx &= \int _{\partial B(o,r)}xu^{2} \cdot \nu \,dS= \int _{\partial B(o,r)}u^{2}x\cdot \frac{x}{r}\,dS \\ &=r \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(2.5)
Using the Cauchy inequality and Schwarz inequality, we get
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx = & \int _{B(o,r)} \bigl[u^{2} \operatorname{div}(x)+D \bigl(u^{2}\bigr)\cdot x \bigr]\,dx \\ = & \int _{B(o,r)} \bigl(nu^{2}+2uDu\cdot x \bigr)\,dx \\ \leq & \int _{B(o,r)} \bigl(nu^{2}+u^{2}+ \vert x \vert ^{2} \vert Du \vert ^{2} \bigr)\,dx \\ \leq & \int _{B(o,r)} \bigl[(n+1)u^{2}+r^{2} \vert Du \vert ^{2} \bigr]\,dx. \end{aligned}$$
(2.6)
Combining (2.5) and (2.6), we obtain the trace inequality
$$\begin{aligned} \frac{1}{r} \int _{\partial B(o,r)}u^{2}\,dS \leq C \int _{B(o,r)} \biggl( \vert Du \vert ^{2}+ \frac{u ^{2}}{r^{2}} \biggr)\,dx. \end{aligned}$$
(2.7)
Employing this inequality (2.7) in (2.4) finishes the proof of (2.1). □
Under the circumstance, we extend the space dimension n and parameter σ in \(\frac{u}{|x|^{\sigma }}\) of Hardy’s inequality. Now we show our main results.
Theorem 2.1
Assume \(n\geq 2\) and \(r>0\), \(u\in H^{1}(B(o,r))\). Then, for \(\sigma <\frac{n}{2}\), we have \(\frac{u}{|x|^{\sigma }}\in L^{2}(B(o,r))\) with the estimate as follows:
If \(\sigma \leq 1\) and \(\sigma < \frac{n}{2}\), we have
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{r ^{2(\sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$
If \(\sigma >1\) and \(\sigma < \frac{n}{2}\), we have
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx\leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$
Remark 2.1
Hardy’s inequality (2.1) is the case of \(\sigma =1\) and \(n\geq 3\) in Theorem 2.1.
Remark 2.2
If \(n=2\), then \(\sigma <1\). \(B(o,r)\) denotes a closed circular region with center o and radius \(r>0\), \(\partial B(o,r)\) denotes a circle, and \(\int _{B(o,r)}\cdots dS\) denotes curvilinear integration.

3 Proofs of the main results

In this section we show the proofs of the main results Theorem 2.1.
Proof
For any \(\rho >0\), since
$$\begin{aligned} D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr)=-\rho \frac{x}{ \vert x \vert ^{\rho +2}}, \end{aligned}$$
which implies
$$\begin{aligned} \frac{1}{{ \vert x \vert }^{2\sigma }} &= \biggl[-\rho \frac{x}{{ \vert x \vert }^{\rho +2}} \biggr] \cdot \biggl[ \biggl(-\frac{1}{ \rho } \biggr)\frac{x}{{ \vert x \vert }^{2\sigma -\rho }} \biggr] \\ &=-\frac{1}{\rho }D \biggl(\frac{1}{{ \vert x \vert }^{\rho }} \biggr)\cdot \frac{x}{ { \vert x \vert }^{2\sigma -\rho }} . \end{aligned}$$
(3.1)
By the global approximation theorem, we may assume \(u\in C^{\infty }(B(o,r))\). Noting that (3.1) holds, we obtain
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx &= -\frac{1}{\rho } \int _{B(o,r)}u^{2}D \biggl(\frac{1}{ \vert x \vert ^{\rho }} \biggr) \cdot \frac{x}{ \vert x \vert ^{2 \sigma -\rho }}\,dx \\ &= -\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \biggl(\frac{1}{ \vert x \vert ^{ \rho }} \biggr)_{x_{i}} \biggl(u^{2} \frac{x_{i}}{ \vert x \vert ^{2\sigma -\rho }} \biggr)\,dx \\ &= -\frac{1}{\rho } \int _{\partial B(o,r)}\sum_{i=1}^{n}u^{2} \nu _{i} \cdot \frac{x_{i}}{ \vert x \vert ^{2\sigma }}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)}\sum_{i=1}^{n} \frac{1}{ \vert x \vert ^{\rho }} \biggl(u^{2}\frac{x_{i}}{ \vert x \vert ^{2\sigma -\rho }} \biggr)_{x_{i}} \,dx \\ &= -\frac{1}{\rho r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS \\ &\quad {}+\frac{1}{\rho } \int _{B(o,r)} \biggl[2uDu\cdot \frac{x}{ \vert x \vert ^{2\sigma }}+(n+\rho -2\sigma )\frac{u^{2}}{ \vert x \vert ^{2\sigma }} \biggr]\,dx. \end{aligned}$$
(3.2)
Hence
$$\begin{aligned} (n-2\sigma ) \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx &= -2 \int _{B(o,r)}uDu \cdot \frac{x}{ \vert x \vert ^{2\sigma }}\,dx \\ &\quad {}+\frac{1}{r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS. \end{aligned}$$
(3.3)
For any \(\varepsilon >0\), using the Cauchy inequality and Schwarz inequality, we obtain
$$\begin{aligned} -2 \int _{B(o,r)}uDu\cdot \frac{x}{ \vert x \vert ^{2\sigma }}\,dx &= -2 \int _{B(o,r)}\frac{u}{ \vert x \vert ^{ \sigma }}Du\cdot \frac{x}{ \vert x \vert ^{\sigma }}\,dx \\ &\leq 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert ^{\sigma }} \vert Du \vert \biggl\vert \frac{x}{ \vert x \vert ^{ \sigma }} \biggr\vert \,dx \\ &= 2 \int _{B(o,r)}\frac{ \vert u \vert }{ \vert x \vert ^{\sigma }} \vert Du \vert \frac{1}{ \vert x \vert ^{\sigma -1}}\,dx \\ &\leq 2\varepsilon \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \\ &\quad {}+\frac{1}{2\varepsilon } \int _{B(o,r)} \vert Du \vert ^{2}\frac{1}{ \vert x \vert ^{2(\sigma -1)}} \,dx. \end{aligned}$$
(3.4)
According to the divergence theorem, we have
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx=r \int _{\partial B(o,r)}u^{2}\,dS, \end{aligned}$$
and using the Cauchy inequality and Schwarz inequality, we get
$$\begin{aligned} \int _{B(o,r)}\operatorname{div}\bigl(xu^{2}\bigr)\,dx &= \int _{B(o,r)} \bigl(nu^{2}+2uDu \cdot x \bigr)\,dx \\ &\leq \int _{B(o,r)} \bigl(nu^{2}+u^{2}+ \vert Du \vert ^{2} \vert x \vert ^{2} \bigr)\,dx \\ &\leq \int _{B(o,r)} \bigl[(n+1)u^{2}+r^{2} \vert Du \vert ^{2} \bigr]\,dx, \end{aligned}$$
which implies
$$\begin{aligned} \frac{1}{r^{2\sigma -1}} \int _{\partial B(o,r)}u^{2}\,dS \leq \frac{n+1}{r ^{2\sigma }} \int _{B(o,r)}u^{2}\,dx+\frac{1}{r^{2(\sigma -1)}} \int _{B(o,r)} \vert Du \vert ^{2}\,dx. \end{aligned}$$
(3.5)
By substituting (3.4) and (3.5) into (3.3), fixing ε such that \(n-2\sigma -2\varepsilon >0\), we conclude
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl[\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}+ \frac{u^{2}}{r^{2 \sigma }} \biggr]\,dx. \end{aligned}$$
(3.6)
Therefore, from (3.6), for \(n\geq 2\) and \(\sigma <\frac{n}{2}\):
if \(\sigma \leq 1\), noting that
$$\begin{aligned} \frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2(\sigma -1)}}\leq \frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}, \quad x\in B(o,r), \end{aligned}$$
we obtain
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{r ^{2(\sigma -1)}}+\frac{u^{2}}{r^{2\sigma }} \biggr) \,dx. \end{aligned}$$
(3.7)
if \(\sigma >1\), noting that
$$\begin{aligned} \frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2(\sigma -1)}}\geq \frac{ \vert Du \vert ^{2}}{r^{2(\sigma -1)}}, \quad x\in B(o,r), \end{aligned}$$
we obtain
$$\begin{aligned} \int _{B(o,r)}\frac{u^{2}}{ \vert x \vert ^{2\sigma }}\,dx \leq C \int _{B(o,r)} \biggl(\frac{ \vert Du \vert ^{2}}{ \vert x \vert ^{2( \sigma -1)}} +\frac{u^{2}}{r^{2\sigma }} \biggr)\,dx. \end{aligned}$$
(3.8)
The proof of Theorem 2.1 is completed. □

4 Conclusions

In this paper, we refine the proof of Hardy’s inequality for readers to grasp the essence of the proof and extend Hardy’s inequality in Sobolev space from two aspects. That is to say, we extend the integral estimation function from \(\frac{u}{|x|}\) to \(\frac{u}{|x|^{\sigma }}\) with suitable \(\sigma >0\) and extend the space dimension from \(n \geq 3\) to \(n \geq 2\). Hardy’s inequality in [10, 12] is the special case of our results.

Acknowledgements

The authors would like to thank the referees for their valuable comments and suggestion.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Am. Math. Soc., Rhode Island (2003) MATH Cazenave, T.: Semilinear Schrödinger Equations. Courant Lecture Notes in Mathematics, vol. 10. Am. Math. Soc., Rhode Island (2003) MATH
2.
Zurück zum Zitat Chu, Y.M., Wang, G.D., Zhang, X.H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010) MathSciNetMATH Chu, Y.M., Wang, G.D., Zhang, X.H.: Schur convexity and Hadamard’s inequality. Math. Inequal. Appl. 13(4), 725–731 (2010) MathSciNetMATH
3.
Zurück zum Zitat Chu, Y.M., Wang, G.D., Zhang, X.H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011) MathSciNetCrossRef Chu, Y.M., Wang, G.D., Zhang, X.H.: The Schur multiplicative and harmonic convexities of the complete symmetric function. Math. Nachr. 284(5–6), 653–663 (2011) MathSciNetCrossRef
4.
Zurück zum Zitat Chu, Y.M., Wang, M.K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012) MathSciNetCrossRef Chu, Y.M., Wang, M.K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012) MathSciNetCrossRef
5.
Zurück zum Zitat Chu, Y.M., Wang, M.K., Qiu, S.L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetCrossRef Chu, Y.M., Wang, M.K., Qiu, S.L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012) MathSciNetCrossRef
6.
Zurück zum Zitat Chu, Y.M., Xia, W.F., Zhang, X.H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012) MathSciNetCrossRef Chu, Y.M., Xia, W.F., Zhang, X.H.: The Schur concavity, Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications. J. Multivar. Anal. 105, 412–421 (2012) MathSciNetCrossRef
7.
Zurück zum Zitat Deng, Y., Wu, S., He, D.: A sharpened version of Hardy’s inequality for parameter \(p=5/{4}\). J. Inequal. Appl. 2013, 63 (2013) MathSciNetCrossRef Deng, Y., Wu, S., He, D.: A sharpened version of Hardy’s inequality for parameter \(p=5/{4}\). J. Inequal. Appl. 2013, 63 (2013) MathSciNetCrossRef
8.
Zurück zum Zitat Du, G.W., Li, F.: Global higher integrability of solutions to subelliptic double obstacle problems. J. Appl. Anal. Comput. 8(3), 1021–1032 (2018) MathSciNet Du, G.W., Li, F.: Global higher integrability of solutions to subelliptic double obstacle problems. J. Appl. Anal. Comput. 8(3), 1021–1032 (2018) MathSciNet
9.
Zurück zum Zitat Du, G.W., Li, F.: Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients. J. Inequal. Appl. 2018, 53 (2018) MathSciNetCrossRef Du, G.W., Li, F.: Interior regularity of obstacle problems for nonlinear subelliptic systems with VMO coefficients. J. Inequal. Appl. 2018, 53 (2018) MathSciNetCrossRef
10.
Zurück zum Zitat Evans, L.C.: Partial Differential Equations, 2nd edn. Grad. Stud. Math., vol. 19. Am. Math. Soc., Providence (2010) MATH Evans, L.C.: Partial Differential Equations, 2nd edn. Grad. Stud. Math., vol. 19. Am. Math. Soc., Providence (2010) MATH
11.
Zurück zum Zitat Feng, Y.H., Liu, C.M.: Stability of steady-state solutions to Navier–Stokes–Poisson systems. J. Math. Anal. Appl. 462, 1679–1694 (2018) MathSciNetCrossRef Feng, Y.H., Liu, C.M.: Stability of steady-state solutions to Navier–Stokes–Poisson systems. J. Math. Anal. Appl. 462, 1679–1694 (2018) MathSciNetCrossRef
12.
Zurück zum Zitat Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952) MATH Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge University Press, Cambridge (1952) MATH
13.
Zurück zum Zitat Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem. World Scientific, Hackensack (2011) CrossRef Ivanov, S.P., Vassilev, D.N.: Extremals for the Sobolev Inequality and the Quaternionic Contact Yamabe Problem. World Scientific, Hackensack (2011) CrossRef
14.
Zurück zum Zitat Kannappan, P.: Functional Equations and Inequalities with Applications. Springer, New York (2009) CrossRef Kannappan, P.: Functional Equations and Inequalities with Applications. Springer, New York (2009) CrossRef
15.
Zurück zum Zitat Li, F.: Global existence and uniqueness of weak solution for nonlinear viscoelastic full Marguerre–von Karman shallow shell equations. Acta Math. Sin. Engl. Ser. 25(12), 2133–2156 (2009) MathSciNetCrossRef Li, F.: Global existence and uniqueness of weak solution for nonlinear viscoelastic full Marguerre–von Karman shallow shell equations. Acta Math. Sin. Engl. Ser. 25(12), 2133–2156 (2009) MathSciNetCrossRef
16.
Zurück zum Zitat Li, F.: Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Karman shallow shells system. J. Differ. Equ. 249, 1241–1257 (2010) CrossRef Li, F.: Limit behavior of the solution to nonlinear viscoelastic Marguerre–von Karman shallow shells system. J. Differ. Equ. 249, 1241–1257 (2010) CrossRef
17.
Zurück zum Zitat Li, F., Bai, Y.: Uniform rates of decay for nonlinear viscoelastic Marguerre–von Karman shallow shell system. J. Math. Anal. Appl. 351(2), 522–535 (2009) MathSciNetCrossRef Li, F., Bai, Y.: Uniform rates of decay for nonlinear viscoelastic Marguerre–von Karman shallow shell system. J. Math. Anal. Appl. 351(2), 522–535 (2009) MathSciNetCrossRef
18.
Zurück zum Zitat Li, F., Bao, Y.: Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition. J. Dyn. Control Syst. 23, 301–315 (2017) MathSciNetCrossRef Li, F., Bao, Y.: Uniform stability of the solution for a memory-type elasticity system with nonhomogeneous boundary control condition. J. Dyn. Control Syst. 23, 301–315 (2017) MathSciNetCrossRef
19.
Zurück zum Zitat Li, F., Du, G.: General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comput. 8, 390–401 (2018) MathSciNet Li, F., Du, G.: General energy decay for a degenerate viscoelastic Petrovsky-type plate equation with boundary feedback. J. Appl. Anal. Comput. 8, 390–401 (2018) MathSciNet
20.
Zurück zum Zitat Li, F., Gao, Q.: Blow-up of solution for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383–392 (2016) MathSciNet Li, F., Gao, Q.: Blow-up of solution for a nonlinear Petrovsky type equation with memory. Appl. Math. Comput. 274, 383–392 (2016) MathSciNet
21.
Zurück zum Zitat Li, F., Hu, F.Y.: Weighted integral inequality and applications in general energy decay estimate for a variable density wave equation with memory. Bound. Value Probl. 2018, 164 (2018) MathSciNetCrossRef Li, F., Hu, F.Y.: Weighted integral inequality and applications in general energy decay estimate for a variable density wave equation with memory. Bound. Value Probl. 2018, 164 (2018) MathSciNetCrossRef
22.
Zurück zum Zitat Li, F., Zhao, C.: Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping. Nonlinear Anal., Theory Methods Appl. 74, 3468–3477 (2011) MathSciNetCrossRef Li, F., Zhao, C.: Uniform energy decay rates for nonlinear viscoelastic wave equation with nonlocal boundary damping. Nonlinear Anal., Theory Methods Appl. 74, 3468–3477 (2011) MathSciNetCrossRef
23.
Zurück zum Zitat Li, F., Zhao, Z., Chen, Y.: Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation. Nonlinear Anal., Real World Appl. 12, 1770–1784 (2011) MathSciNet Li, F., Zhao, Z., Chen, Y.: Global existence uniqueness and decay estimates for nonlinear viscoelastic wave equation with boundary dissipation. Nonlinear Anal., Real World Appl. 12, 1770–1784 (2011) MathSciNet
24.
Zurück zum Zitat Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system. Z. Angew. Math. Phys. 68, 105 (2017) MathSciNetCrossRef Liu, C.M., Peng, Y.J.: Stability of periodic steady-state solutions to a non-isentropic Euler–Maxwell system. Z. Angew. Math. Phys. 68, 105 (2017) MathSciNetCrossRef
25.
Zurück zum Zitat Liu, C.M., Peng, Y.J.: Convergence of a non-isentropic Euler–Poisson system for all time. J. Math. Pures Appl. 119(9), 255–279 (2018) MathSciNetCrossRef Liu, C.M., Peng, Y.J.: Convergence of a non-isentropic Euler–Poisson system for all time. J. Math. Pures Appl. 119(9), 255–279 (2018) MathSciNetCrossRef
26.
Zurück zum Zitat Pachpatte, B.G.: Integral and Finite Difference Inequalities and Applications. Elsevier, Amsterdam (2006) MATH Pachpatte, B.G.: Integral and Finite Difference Inequalities and Applications. Elsevier, Amsterdam (2006) MATH
27.
Zurück zum Zitat Patriksson, M.: Nonlinear Programming and Variational Inequality Problem. Kluwer Academic Publishers, Dordrecht (1999) CrossRef Patriksson, M.: Nonlinear Programming and Variational Inequality Problem. Kluwer Academic Publishers, Dordrecht (1999) CrossRef
28.
Zurück zum Zitat Pons, O.: Inequalities in Analysis and Probability. World Scientific, Hackensack (2013) CrossRef Pons, O.: Inequalities in Analysis and Probability. World Scientific, Hackensack (2013) CrossRef
29.
Zurück zum Zitat Qian, W.M., Chu, Y.M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, 274 (2017) MathSciNetCrossRef Qian, W.M., Chu, Y.M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017, 274 (2017) MathSciNetCrossRef
30.
Zurück zum Zitat Qin, Y.: Analytic Inequalities and Their Applications in PDEs. Springer, Switzerland (2017) CrossRef Qin, Y.: Analytic Inequalities and Their Applications in PDEs. Springer, Switzerland (2017) CrossRef
31.
Zurück zum Zitat Qin, Y.M.: Analytic Inequalities and Their Applications. Springer, Cham (2017) CrossRef Qin, Y.M.: Analytic Inequalities and Their Applications. Springer, Cham (2017) CrossRef
32.
Zurück zum Zitat Steinbach, J.: A Variational Inequality Approach to Free Boundary Problem with Applications. Birkhäuser, Basel (2002) CrossRef Steinbach, J.: A Variational Inequality Approach to Free Boundary Problem with Applications. Birkhäuser, Basel (2002) CrossRef
33.
Zurück zum Zitat Wang, F.Y.: Harnack Inequalities for Stochastic Partial Differential Equations. Springer, New York (2013) CrossRef Wang, F.Y.: Harnack Inequalities for Stochastic Partial Differential Equations. Springer, New York (2013) CrossRef
34.
Zurück zum Zitat Wang, G.D., Zhang, X.H., Chu, Y.M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011) MathSciNetMATH Wang, G.D., Zhang, X.H., Chu, Y.M.: A power mean inequality for the Grötzsch ring function. Math. Inequal. Appl. 14(4), 833–837 (2011) MathSciNetMATH
35.
Zurück zum Zitat Wang, M.K., Chu, Y.M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATH Wang, M.K., Chu, Y.M.: Landen inequalities for a class of hypergeometric functions with applications. Math. Inequal. Appl. 21(2), 521–537 (2018) MathSciNetMATH
36.
Zurück zum Zitat Wang, M.K., Chu, Y.M., Qiu, Y.F., Qiu, S.L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetCrossRef Wang, M.K., Chu, Y.M., Qiu, Y.F., Qiu, S.L.: An optimal power mean inequality for the complete elliptic integrals. Appl. Math. Lett. 24(6), 887–890 (2011) MathSciNetCrossRef
37.
Zurück zum Zitat Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018) MathSciNetCrossRef Wang, M.K., Li, Y.M., Chu, Y.M.: Inequalities and infinite product formula for Ramanujan generalized modular equation function. Ramanujan J. 46(1), 189–200 (2018) MathSciNetCrossRef
38.
Zurück zum Zitat Wang, M.K., Qiu, S.L., Chu, Y.M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) MathSciNetMATH Wang, M.K., Qiu, S.L., Chu, Y.M.: Infinite series formula for Hübner upper bound function with applications to Hersch–Pfluger distortion function. Math. Inequal. Appl. 21(3), 629–648 (2018) MathSciNetMATH
39.
Zurück zum Zitat Wang, M.K., Wang, Z.K., Chu, Y.M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012) MathSciNetCrossRef Wang, M.K., Wang, Z.K., Chu, Y.M.: An optimal double inequality between geometric and identric means. Appl. Math. Lett. 25(3), 471–475 (2012) MathSciNetCrossRef
40.
Zurück zum Zitat Xu, Q., Zhou, M., Zhang, X.: On a strengthened version of Hardy’s inequality. J. Inequal. Appl. 2012, 300 (2012) MathSciNetCrossRef Xu, Q., Zhou, M., Zhang, X.: On a strengthened version of Hardy’s inequality. J. Inequal. Appl. 2012, 300 (2012) MathSciNetCrossRef
41.
Zurück zum Zitat Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNetMATH Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the error function. Math. Inequal. Appl. 21(2), 469–479 (2018) MathSciNetMATH
42.
Zurück zum Zitat Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRef Yang, Z.H., Qian, W.M., Chu, Y.M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018) MathSciNetCrossRef
43.
Zurück zum Zitat Yang, Z.H., Zhang, W., Chu, Y.M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH Yang, Z.H., Zhang, W., Chu, Y.M.: Sharp Gautschi inequality for parameter \(0< p<1\) with applications. Math. Inequal. Appl. 20(4), 1107–1120 (2017) MathSciNetMATH
45.
Zurück zum Zitat Zhao, T.H., Wang, M.K., Zhang, W., Chu, Y.M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 251 (2018) MathSciNetCrossRef Zhao, T.H., Wang, M.K., Zhang, W., Chu, Y.M.: Quadratic transformation inequalities for Gaussian hypergeometric function. J. Inequal. Appl. 2018, 251 (2018) MathSciNetCrossRef
Metadaten
Titel
The refinement and generalization of Hardy’s inequality in Sobolev space
verfasst von
Xiaomin Xue
Fushan Li
Publikationsdatum
01.12.2018
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2018
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-018-1922-5

Weitere Artikel der Ausgabe 1/2018

Journal of Inequalities and Applications 1/2018 Zur Ausgabe

Premium Partner